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In this paper, we discuss how to realize Lorenz like Smale flows (LLSF) on 3-manifolds.
It is an extension of M. Sullivan’s work about Lorenz Smale flows on S3. We focus on
two questions: (1) Classify the topological conjugate classes of LLSF which can be realized
on S3; (2) Which 3-manifolds admit LLSF? If some 3-manifold admits LLSF, how does it
admit LLSF? This paper is in some sense parallel to the work of J. Morgan and M. Wada on
Morse–Smale flows on 3-manifolds.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many papers about flows on three-manifolds are about the realization of some types of flows on three-manifolds.
J. Morgan [13] studied which three-manifolds admit non-singular Morse–Smale flows (NMSF) using round handle decom-
position. Following J. Morgan’s work, M. Wada [17] systematically studied how to realize NMSF on S3. M. Handel and
W.P. Thurston [12], Goodman [11] constructed some three-manifolds which admit Anosov flows.

J. Franks [5] systematically studied how to realize non-singular Smale flows (NSF) on S3 via Lyapunov graph. However,
this method doesn’t include embedding information. On the other hand, J. Franks [6,7] used homology to describe some
embedding information.

Similar to M. Wada’s work about the realization of NMSF on S3, M. Sullivan [16] studied a special type of NSF on S3.
This type of NSF is called Lorenz Smale flows. A Lorenz Smale flow is a Smale flow with three basic sets: a repelling orbit,
an attracting orbit, and a non-trivial saddle set modeled by a Lorenz template.

In this paper, we discuss how to realize Lorenz like Smale flows (LLSF) on 3-manifolds. It is an extension of M. Sullivan’s
work [16] about Lorenz Smale flows on S3. A LLSF is a NSF with three basic sets: a repelling orbit r, an attracting orbit a,
and a non-trivial saddle set modeled by a Lorenz like template. Disregarding embedding information, there are three types
of Lorenz like templates: Lorenz template L(0,0), horseshoe template L(0,1), and template L(1,1). We denote by L(i, j)
a Lorenz like template whose saddle set is modeled by Lorenz like template L(i, j). We focus on two questions: (1) Classify
the topological conjugate classes of LLSF which can be realized on S3; (2) Which 3-manifolds admit LLSF? If it admits LLSF,
how does it admit LLSF? B. Campos, A. Cordero, J. Martínez Alfaro, P. Vindel [4] studied the same problem as question (2)
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but where the saddle set is a single periodic orbit. The method we use is similar to that of M. Sullivan. The difference
between this paper and M. Sullivan’s paper is that we try to use only combinatorial tools in the discussion. We hope that
these discussions will shed some lights to a systematically study about NSF on three-manifolds.

The main theorems are the following.

Theorem 1. For an L(0,1) Lorenz like Smale flow on S3 the following and only the following configurations are realizable. The link
a � r is either a Hopf link or a trefoil and meridian. In the later case the saddle set is modeled by a standard embedded L(0,1) Lorenz
like template, i.e. the saddle set is modeled by embedded L(0,1) and the cores of both bands are unknotted and unlinked each other.
In the former case, there are three possibilities: (1) The saddle set is standardly embedded. (2) The saddle set is modeled by embedded
L(2p + 2q − 2,2p + 2q − 1). The cores of two bands are two parallel (p,q) torus knots. p, q are any coprime integers. (3) The saddle
set is modeled by embedded L(0,2p + 2q − 1). The core of the twisted band is a (p,q) torus knot, the core of the other band is
unknotted and unlinked with the former one. p, q are any coprime integers.

Theorem 2. For an L(1,1) Lorenz like Smale flow on S3 the following and only the following configurations are realizable. The link
a � r is a link which is composed of a trivial knot and a (p,3) torus knot in the boundary of a solid torus neighborhood of the trivial
knot. Here p is any integer such that p, 3 are coprime. The saddle set is modeled by embedded L(2n + 1,4n + 1) for any n. The linking
number of the cores of these two bands is 2n, the core of one band is unknotted and the core of the other band is a (2,2n + 1) torus
knot.

Theorem 3. The closed orientable 3-manifolds which admit L(0,1) Lorenz like Smale flows are the following and only the following:
S3 , S2 × S1 , lens space L(p,q), Seifert manifolds S2( 1

2 , 1
3 ,

β
α ), S2( 1

2 , 1
3 ,

β1
α1

,
β2
α2

), and L(3,1)�L(2,1). Here α,β are any integers such
that α and β are coprime, α �= 0 and αi , βi (i = 1,2) also satisfies this restriction.

Theorem 4. The closed orientable 3-manifolds which admit L(1,1) Lorenz like Smale flows are the following and only the following:
S3; lens space L(3,1); L(3,1)�Y , here Y is S2 × S1 or any lens space L(p,q); Seifert manifolds S2( 1

3 ,
β1
α1

,
β2
α2

). Here αi , βi (i = 1,2)

are any integers such that αi and βi are coprime, αi �= 0.

The descriptions of LLSF on the 3-manifolds in Theorems 3, 4 can be found in Section 4.

2. Preliminaries

The most popular template is Lorenz template which was used by R.F. Williams [18] as a model to analyze Lorenz
attractor. Template theory was first introduced to dynamics by R.F. Williams and J. Birman in their papers [1,2].

Definition 2.1. A template (T , φ) is a smooth branched 2-manifold T , constructed from two types of charts, called joining
charts and splitting charts, together with a semi-flow. A semi-flow is the same as flow except that one cannot back up
uniquely. In Fig. 1 the semi-flows are indicated by arrows on charts. The gluing maps between charts must respect the
semi-flow and act linearly on the edges.

As [16], by a simple Smale flow, we mean a non-singular Smale flow with three basic sets: a repelling orbit, an attracting
orbit, and a non-trivial saddle set. If the non-trivial saddle set can be modeled by Lorenz like template, we call the simple
Smale flow a Lorenz like Smale flow.
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Fig. 3.

Definition 2.2. For m,n ∈ Z , denote by L(m,n) the (m,n) type Lorenz like template. Here m, n are half-twists number respec-
tively, as Fig. 2 shows.

As far as topological classification is concerned, there are only three Lorenz like templates: L(0,0), L(0,1) and L(1,1).
L(0,0) is the Lorenz template; L(0,1) is the Smale horseshoe template. M. Sullivan studied simple Smale flow on S3 in the
case the saddle set can be modeled by L(0,0). So we can restrict our discussion to L(0,1) and L(1,1). If we embed these
templates to S3, then we can denote them by L(m,n). Here m, n are half-twists number of two bands of the template.

For a Lorenz like Smale flow, an isolating neighborhood of the saddle set can be regarded as a thickened Lorenz like
template. The isolating neighborhood is a genus two handlebody with flow. The points in the boundary of the isolating
neighborhood where the flow is transverse outward (inward) is called the exit set (entrance set). The exit set and the entrance
set intersect in a finite union of closed curves. There are two cases: L(0,1) and L(1,1), we denote their neighborhoods by
M and N respectively. The exit set and the entrance set of M (N) are denoted by X and Y respectively. The core of X is
denoted by C ; the intersection of X and Y , which consists of closed curves b, c and d, is denoted by S . The fundamental
group of M (N) is Z ∗ Z = 〈x, y〉. The basic point is P . See Fig. 3.

3. The realization of Lorenz like Smale flows on S3

The basic facts about three-manifolds used in this paper can be found in [9,10].



B. Yu / Topology and its Applications 156 (2009) 2462–2469 2465
Fig. 4.

Lemma 3.1. Let W = D2(
q1
p1

,
q2
p2

) be a Seifert manifold with orbit-manifold a disk and with two exceptional fibers. q1
p1

, q2
p2

are slopes
of these two exceptional fibers. p1 and p2 are coprime. Given two integers s, t such that p1s − p2t = 1. Then W is a knot complement
space if and only if q1 ≡ −t (mod p1), q2 ≡ s (mod p2) or q1 ≡ t (mod p1), q2 ≡ −s (mod p2). Furthermore, if W is a knot
complement space, the knot must be a (p1, p2) type torus knot.

Proof. π1(W ) = {x, y | xp1 = yp2}. Hence if W is a knot complement space the knot must be (p1, p2) torus knot.
See [3, Lemma 15.37, Corollary 15.23]. Some standard computations show a (p1, p2) type knot complement space can be
written as D2(−t

p1
, s

p2
). By Proposition 2.1, Theorem 2.3 in Chapter 2 of [8] and computations above, it is easy to show W is

a knot complement space if and only if q1 ≡ −t (mod p1), q2 ≡ s (mod p2) or q1 ≡ t (mod p1), q2 ≡ −s (mod p2). In these
cases, the knot must be a (p1, p2) type torus knot. �

Let A (R) be a canonical neighborhood of a closed attractor (repeller) and a (r) is the core of A (R). A (R) is a solid torus
with flow which is transverse inward (outward) to ∂ A (∂ R). To construct Lorenz like Smale flows on S3, we first attach the
closure of the exit set of a thickened Lorenz like template M (N) to ∂ A. We denote the attached space MA (NA).

Lemma 3.2. MA (NA) can be regarded as part of a Lorenz like Smale flow on S3 if and only if the interior of MA (NA) is homeomorphic
to the complement of a knot in S3 .

Proof. If MA (NA) is a building block of a Lorenz like Smale flow on S3, then MA can be regarded as the closure of the
complement of R in S3. The core of R is a knot in S3. The “only if ” part is proved.

The “if ” part is easy to prove by attaching R to MA (NA) such that its core is the knot and its boundary is attached to
the boundary of MA (NA). �

Lemma 3.2 is the key. We will discuss all possible configurations of MA and NA using Lemma 3.2 to decide which ones
can be realized in a Lorenz like Smale flow on S3.

Attaching i-handle is a useful surgery in our arguments below. An i-handle, 1 � i � 3, is an i-ball of form Di × D3−i . The
index i indicates the intention to attach it to something else along the Si−1 × D3−i part of its boundary. More detail can be
found in Chapter 11 of [15].

Case 1. MA (the proof of Theorem 1).
In this case, the core C is two circles c1, c2 connected by an arc l, c1 is homotopic to x in M . The exit set X is the union

of three sets: c1, c2 and l. Here c1, c2 and l are homeomorphic to c1 × [0,1], c2 × [0,1] and l × [0,1] respectively.

Case 1.1. c1, c2 both are inessential in ∂ A. There are three subcases, as Fig. 4 shows.
We attach 2-handles D1 and D2 to M along c1 and c2 respectively, we call it M ′ . In subcase (1.1.1), MA is homeomorphic

to the manifold which is constructed by attaching 1-handle D3 to M ′ in l; in subcase (1.1.2), MA is homeomorphic to
the manifold which is constructed by attaching 1-handle D3 to M ′ in D1; in subcase (1.1.3), MA is homeomorphic to the
manifold which is constructed by attaching 1-handle D3 to M ′ in D2. Actually, in any subcase above, MA is homeomorphic
to solid torus with core a. So in Case 1, any subcase can be realized as Lorenz like Smale flow on S3 and a � r is a Hopf link
in S3. However, as flows, any one of the three subcases is not topologically conjugate to the others. In this case, the saddle
set is standardly embedded, i.e. the saddle set is modeled by embedded L(0,1) and the cores of both bands are unknotted
and unlinked to each other.

Case 1.2. c2 is inessential in ∂ A, c1 is essential in ∂ A, as Fig. 5(1.2) shows.
Here c1 is a (p,q) type curve in ∂ A. Because c2 is inessential, to visualize MA, we can attach a 2-handle to M along c2,

we call it M ′ . M ′ is a solid torus, c1 is a longitude in ∂M ′ . Then we can see that MA is homeomorphic to a solid torus, so
this case can be realized as Lorenz like Smale flow on S3 and a � r is a Hopf link in S3, c1 is a (p,q) type torus knot. In this
case, the saddle set is modeled by embedded L(2p + 2q − 2,2p + 2q − 1). The cores of two bands are two parallel (p,q)

torus knots.

Case 1.3. c1 is inessential in ∂ A, c2 is essential in ∂ A, as Fig. 5(1.3) shows. Here c2 is a (p,q) type curve in ∂ A. By the
same analysis in Case 1.2, we can show that this case can be realized as Lorenz like Smale flow on S3 and a � r is a Hopf
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link in S3, c2 is a (p,q) type torus knot. In this case, the saddle set is modeled by embedded L(0,2p + 2q − 1). The core of
one band is a (p,q) torus knot, the core of the other band is unknotted and unlinked with the former one.

Case 1.4. c1, c2 both are essential in ∂ A, as Fig. 5(1.4) shows. Here c1 and c2 are two parallel (p,q) type curves in ∂ A.
It’s not difficult to see that c bounds a disk D in ∂ A from Fig. 5(1.4). We denote a neighborhood of the disk by B = D × I ,

I = [0,1] and denote by MB the manifold M ∪ B via attaching B to M along ∂ D × I and c. Here c is an annulus neighborhood
of c in ∂M . Hence MBc ∼= A ∪ϕ R , ∂MB is a torus and is divided to two annuluses T1, T2 by d, b. Here ϕ : A1 → A2 is
a homeomorphism, A1 is an annulus in ∂ A and A2 is an annulus in ∂ R .

Using Van Kampen’s theorem, we can get the fundamental group of MB,

π1(MB) = {
x, y

∣∣ x−1 yyx−1 y−1 = 1
}
.

Here x, y are the generators of π1(M) shown in Fig. 3. It is easy to know

π1(MB) = {
x, y

∣∣ y3 = (xy)2}.

It is a trefoil knot group. It can be observed in Fig. 3-1 that we have MB ↪→ S3 with a torus as its boundary. By [3, Lem-
ma 15.37, Corollary 15.23], MB ∼= K c ⊂ S3, here K is a trefoil knot. ∂MB is a torus, by the solid torus theorem [15, p. 107],
MBc ∼= A ∪ϕ R is a solid torus.

We attach a 2-handle to MB along d. Denote it by MBD. By Fig. 3, we know that π1(MBD) = {x, y | x−1 yyx−1 y−1 = 1,

x = 1} is a trivial group. Since ∂MBD ∼= S2, MBD is a three ball. By Dehn surgery theorem, if we attach a solid torus to MB
along ∂MB such that the new manifold is S3 and the core of the solid torus is a trefoil knot in S3, then d is a meridian of
the boundary of the solid torus.

We denote the core of Ai by ai , ai is a (pi,qi) type curve in ∂ A (∂ R), for i = 1,2. Then π1(A ∪ϕ R) = {t, s | t p1 = sp2},
here π1(A) = {t}, π1(R) = {s}. On the other hand, since A ∪ϕ R is a solid torus, π1(A ∪ϕ R) ∼= Z . So we get p1 = 1 or p2 = 1.
If p1 = 1, we can assume q1 = 0. A ∪ϕ R is a solid torus with the same core as R . The entrance and exit sets are separated
by two parallel (p2,q2) type curves in the boundary of this solid torus. In order that A ∪ϕ R with flow could be attached
to MB to form flow on S3, (p2,q2) must be (0,1). In this case, the repeller r is a trefoil knot in S3, the attractor a is
a meridian of r. Similarly, if p2 = 1, the attractor a is a trefoil knot in S3, the repeller r is a meridian of a, and the saddle
set is modeled by a standard embedded L(0,1) Lorenz like template. Fig. 6 shows how the core of the attractor, the repeller,
and the thickened template M are seen in S3.

Case 2. NA (the proof of Theorem 2).
In this case, the core C is a graph with two vertexes and three arcs c1, c2, c3, as Fig. 3-2 shows. Here c1 and c3 are

symmetric, i.e., there is a homeomorphism F : N → N such that F (c1) = c3, F (c3) = c1 and F preserves the flow lines of N .

Case 2.1. All closed curves in C are inessential in ∂ A. Since c1 and c3 are symmetric, there are two subcases, see Fig. 7.
Let π1(A) = {t}. In any subcase above, π1(NA) = {x, y, t | xy−1x = 1, xy = 1} ∼= Z3. So in Case 2.1, the interior of NA

cannot be a knot complement in S3. Thus we cannot obtain a Lorenz like Smale flow on S3 in this case.
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Fig. 8.

Case 2.2. One closed curve in C is inessential in ∂ A and the other two curves are essential in ∂ A. There are two subcases,
see Fig. 8. In the subcase 8-1, c1c3 and c2c3 are two parallel (p,q) curves in ∂ A; in the subcase 8-2, c1c2 and c3c2 are two
parallel (p,q) curves in ∂ A. Let π1(A) = {t}.

Subcase 2.2.1. As Fig. 8-1 shows, we have that c bounds a disk D in ∂ A. We denote a neighborhood of the disk by
B = D × I , I = [0,1] and denote by NB the manifold N ∪ B through attaching B to N along ∂ D × I and c. Hence NBc ∼= A ∪ϕ R ,
∂NB is a torus and is divided to two annuluses T1, T2 by d, b. Here ϕ : A1 → A2, A1 is an annulus in ∂ A and A2 is an annulus
in ∂ R .

π1(NB) = {x, y | xy−1x = 1} = {x} ∼= Z . Hence NB is a solid torus, so we can take d as (3,1) type simple closed curve
in ∂NB. d is homotopic to x3 in the solid torus. NA can be obtained by attaching A to NB along T1. Let s and t be two
integers such that ps − qt = 1. Thus NA ∼= D2(−2

3 , −t
p ). By Lemma 3.1, if NA is homeomorphic to a knot complement space,

the knot must be a (3, p) type torus knot and 3, p are coprime. In this case S3 = NA ∪ R , d is parallel to r. Hence NB ∪ R
is homeomorphic to a solid torus as the same core as NB. Then (NB ∪ R) ∪ A is the standard genus one Heegaard splitting
of S3. Choosing a suitable coordinate of R , we have q = 3 or q = −3.

If p = 3k − 1, then 3 × k − p × 1 = 1. By Lemma 3.1, NA is homeomorphic to a knot complement space if and only if
t ≡ k(p). Similarly, if p = 3k + 1, NA is homeomorphic to a knot complement space if and only if t ≡ k(p). a is a (3,1) type
simple closed curve in ∂NB and is (p,q) type simple closed curve in ∂ A, hence NA is homeomorphic to a knot complement
space if and only if p | (qk + 1). By Lemma 3.2 and arguments above, if and only if p = 3k − 1, q = −3 or p = 3k + 1, q = 3,
NA can be regarded as part of a Lorenz like Smale flows on S3.

So in this subcase, if it can be realized as Lorenz like Smale flow on S3, then a � r is a link which is composed of a trivial
knot a and a (p,3) torus knot r in the boundary of a standard solid torus neighborhood of the trivial knot a. In this case,
the saddle set is modeled by embedded L(2n + 1,4n + 1) for any n. The linking number of these two bands is 2n, the core
of one band is unknotted and the core of the other band is a (2,2n + 1) torus knot.

Subcase 2.2.2. As Fig. 8-2 shows, by similar discussion as in Subcase 2.2.1, if it can be realized as Lorenz like Smale flow
on S3, then a � r is a link which is composed of a trivial knot r and a (p,3) torus knot a in the boundary of a standard
solid torus neighborhood of the trivial knot r.

Case 2.3. All three simple closed curves in C are essential in ∂ A. Some easy arguments about graphs in T 2 tell us that
this case doesn’t exit.

4. 3-manifolds which admit Lorenz like Smale flows

In this section we study when a closed orientable 3-manifold W admits Lorenz like Smale flows. This question is equiva-
lent to how to combine M (N), A and R together, i.e. the entrance sets must be attached to the exit sets. To combine M (N),
A and R together, we first consider all possible MA (NA), then obtain 3-manifold W by attaching R to MA (NA). Hence we
can organize our discussion just like Section 3.

Case 1. MA (the proof of Theorem 3).



2468 B. Yu / Topology and its Applications 156 (2009) 2462–2469
Fig. 9.

Case 1.1. c1, c2 both are inessential in ∂ A. MA is homeomorphic to a solid torus with core a. So all lens spaces L(p,q)

and S2 × S1 admit Lorenz like Smale flows. Let U ∪ V is a genus one Heegaard splitting of L(p,q) or S2 × S1. Then a can
be regarded as the core of U ; r can be regarded as the core of V .

Cases 1.2, 1.3. One of c1, c2 is inessential in ∂ A, the other isn’t. In these two cases, we also obtain all lens spaces L(p,q)

and S2 × S1 admit Lorenz like Smale flows. Let U ∪ V be a genus one Heegaard splitting of L(p,q) or S2 × S1. Then a can
be regarded as the core of U ; r can be regarded as the core of V .

Case 1.4. c1, c2 both are essential in ∂ A. In this case, all lens spaces L(p,q) and all 3-manifolds obtained by doing Dehn
filling from trefoil knot complement space admit Lorenz like Smale flows.

For lens space L(p,q), let U ∪ V be a genus one Heegaard splitting. Then a (r) can be regarded as the core of U ; r (a) can
be regarded as the closed curve e in V . See Fig. 9.

Using L. Moser’s result [14], it is easy to shows that the 3-manifolds obtained by doing Dehn filling from trefoil knot
complement space are Seifert manifolds S2( 1

3 , 1
2 ,

β
α ) and L(3,1)�L(2,1). Here α, β are any integers such that α and β are

coprime, α �= 0.
For Seifert manifold S2( 1

3 , 1
2 ,

β
α ), a (r) is the (α,β) type singular fiber and r (a) is a (0,1) simple closed curve. The chart

is given by regular fiber in ∂ A (∂ R), the chart of the regular fiber is (1,0).
For L(3,1)�L(2,1), the space can be taken as U = D − D1 � D2 × S1 attached with three solid torus N , N1, N2. Here

D is a disk, D1 and D2 are two disjoint disks in the interior of D . ∂ D × S1 and ∂ Di × S1 admit natural multiple charts.
N is attached to U along ∂ D × S1, i.e. the meridian of N attaches to (0,1) simple closed curve; Ni is attached to U along
∂ Di × S1, i.e. the meridian of N1 is attached to (3,1) simple closed curve and the meridian of N2 is attached to (2,1)

simple closed curve. Then a � r (r � a) is isometric to C(N) � pt × S1. Here pt is any given point in D − D1 � D2 and C(N)

is the core of N .
S2( 1

3 , 1
2 ,

β1
α1

,
β2
α2

) also admits this type LLSF. a is the (α1, β1) type of singular fiber and r is the (α2, β2) type of singular

fiber. Here αi , βi (i = 1,2) are any integers such that αi and βi are coprime, αi �= 0.

Case 2. NA (the proof of Theorem 4).

Case 2.1. All simple closed curves in C are inessential in ∂ A. MA is homeomorphic to the connected sum of a solid torus U
and L(3,1). So all L(3,1)�Y admit Lorenz like Smale flows. Here Y is any lens space L(p,q) or S2 × S1. U ∪ R is a genus
one Heegaard splitting of L(p,q) or S2 × S1. Then a can be regarded as the core of U ; r is the core of R .

Case 2.2. One closed curve in C is inessential in ∂ A and the other two curves are essential in ∂ A.

Subcase 2.2.1. c bounds a disk D in ∂ A. d and b are two parallel (3,1) type simple closed curves in ∂NB.
If d bounds a disk in A, NA is homeomorphic to the connected sum of a solid torus U and L(3,1). Similar to Case 2.1, all

L(3,1)�Y admit Lorenz like Smale flows. Here Y is any lens space L(p,q) or S2 × S1 such that p and 3 are coprime. U ∪ R
is a genus one Heegaard splitting of L(p,q) or S2 × S1. Then a can be regarded as the core of U ; r is the core of R . It isn’t
conjugate to Case 2.1.

If d doesn’t bound a disk in A, NA is homeomorphic to D2(−2
3 , −t

p ). Hence Seifert manifold S2(−2
3 , −t

p ,
β
α ) and

L(3,1)�L(p,q) admit Lorenz like Smale flows. Here α, β are any integers such that α and β are coprime, α �= 0.
For Seifert manifold S2(−2

3 , −t
p ,

β
α ), a is the (p,−t) type singular fiber and r is the (α,β) type singular fiber.

For L(3,1)�L(p,q), let U ∪ V be a genus one Heegaard splitting of the lens space L(p,q). Then a can be regarded as the
core of U and r can be regarded as the core of V .

Subcase 2.2.2. As Fig. 8-2 shows, it is the same as Subcase 2.2.1 if we exchange the roles of a and r.
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