Sets and Functions ¹

1 Sets

A set is a collection of elements. The expression $p \in S$ means p is an element of the set S. A set may be defined in several ways: in ordinary English, e.g., let A be the set of positive even integers; by listing its elements within braces, e.g., let $A = \{2, 4, 6, 8, ...\}$; or by using "set builder" notation, e.g., $A = \{n \in \mathbb{Z} \mid n > 0 \text{ and } n \text{ is even }\}$, read: A is the set of all integers n such that n > 0 and n is even (\mathbb{Z} is the standard notation for the integers).

A set does not normally have an order. Thus $\{a,b\} = \{b,a\}$. An **ordered** set is a set together with an ordering. When we want to stress that a set has been endowed with an ordering we will use parenthesizes instead of braces: (a,b) is an ordered set and is not equal to (b,a). Also $\{a,a\}$ is redundant and should be written as $\{a\}$. But (a,a) is not at all the same as (a).

The following notations are standard:

- $\phi = \{\}$, the empty set.
- $A \subset B$: read A is a subset of B, meaning, every element of A is an element of B. Example: $\{2,5\} \subset \{1,2,3,4,5\}$.
- $A \cup B$: A union B, meaning, the set of all elements that are in A or in B. Example: $\{\$, *, !\} \cup \{\alpha, !, \star, 17\} = \{\$, *, !, \alpha, \star, 17\}$.
- $A \cap B$: read A intersection B, meaning, the set of all elements that are in A and in B. Example: $\{\$, *, !\} \cap \{\alpha, !, \star, 17\} = \{!\}$.
- A-B: read A minus B, meaning, the set of all elements of A that are not elements of B. Example: $\{\$, *, !\} \{\alpha, !, \star, 17\} = \{\$, *\}$.
- $A \times B$: read A cross (product) B, meaning, the set of ordered pairs (a,b) where $a \in A$ and $b \in B$. Since there is a natural one-to-one correspondence between $(A \times B) \times C$ and $A \times (B \times C)$, $((a,b),c) \longleftrightarrow (a,(b,c))$, we shall ignore the distinction between them and use the notation $A \times B \times C$ for the set $\{(a,b,c) \mid a \in A, b \in B, \text{ and } c \in C\}$. Other multiple cross products are defined similarly. Examples: $\{1,3\} \times C$

¹© Michael C. Sullivan, May 22, 2017

$$\{0,1,2\} = \{(1,0),(1,1),(1,2),(3,0),(3,1),(3,2)\}.$$
 $\{*,\#\} \times \{\%\} = \{(*,\%),(\#,\%)\}.$

• $A^n = A \times \cdots \times A$, n times. Example: $\{2,3\}^3 = \{(2,2,2), (2,2,3), (2,3,2), (2,3,3), (3,2,2), (3,2,3), (3,3,2), (3,3,3)\}$.

Some standard sets are:

- \mathbb{Z} : the integers (most likely from the German Zahl)
- \mathbb{Q} : the rationals (quotients)
- \mathbb{R} : the reals
- \bullet \mathbb{C} : the complex numbers

Remark. The sets \mathbb{Z} , \mathbb{Q} , and \mathbb{R} are normally given an ordering. Interestingly, \mathbb{C} is not typically ordered.

Interval Notation:

Remark. The notation "(a, b)" is ambiguous; it could represent an interval or an ordered pair. One has to consider the context to understand the intended meaning. On behalf of mathematicians everywhere, I apologize for any in convenience this may cause.

Examples:

- $\{x \in \mathbb{R} \mid x \le -\sqrt{7}\} \cup \{x \in \mathbb{R} \mid x \ge \sqrt{7}\}$ is the solution set for $x^2 7 \ge 0$.
- $\mathbb{R} \{0\}$ is the natural domain of 1/x.
- \mathbb{R}^2 is the plane. \mathbb{R}^3 is 3-dimensional space. \mathbb{R}^4 is 4-dimensional space. And so on.
- $\phi \subset A$, $\phi = A \cap \phi$, and $A = A \cup \phi$ are true statements for all sets A.
- $\{x \in \mathbb{R} \mid -2 \le x < 5\} = [-2, 5) = [-2, 7] \cap (-10, 5).$

• $S = [0,1] \times [0,1]$ is the *unit square* in the plane \mathbb{R}^2 with corners (0,0), (1,0), (0,1), and (1,1).

Problems:

- 1. Describe $[0,1] \times [0,2] \times [0,3]$.
- 2. Simplify $((1,3) \cap (2,5)) \cup [3,4)$.
- 3. Let $A = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 9\}$, $B = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 4\}$, and $C = \{(x,y) \in \mathbb{R}^2 \mid y \ge 0\}$. Graph A B, $A \cap (\mathbb{R}^2 B)$, $A \cap C$, and A C.
- 4. Find the solution set in \mathbb{R}^2 of $\sin x \cos y = 0$.
- 5. Draw $\mathbb{Z} \times \mathbb{Z}$, $\mathbb{Z} \times \mathbb{R}$, and $((0,1] \cup \{2,3\}) \times ([-2,-1] \cup (2,3))$ as subsets of \mathbb{R}^2 .
- 6. Let A be a set. What is $A \times \phi$?
- 7. [Hard] Let A, B, and C be sets. Prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. (You can draw pictures to "see" this, but you need to reason from the definitions to prove it.)

2 Functions

Intuitively, a function f from a set A to a set B assigns to each element of A one element of B. Formally, f is a subset of $A \times B$ such that for every $a \in A$ there is one and only one $b \in B$ with $(a,b) \in f$. We normally write $f: A \to B$, and express $(a,b) \in f$ by b = f(a).

A function $f: A \to B$ is **onto** if for every $b \in B$ there is at least one $a \in A$ such that $(a, b) \in f$, *i.e.*, such that f(a) = b. A function $f: A \to B$ is **one-to-one** if for every $b \in B$ there is at most one $a \in A$ with f(a) = b.

Let $f: A \to B, A' \subset A$, and $B' \subset B$. Then we define,

- $f(A') = \{b \in B \mid b = f(a) \text{ for at least one } a \in A'\}$ and is called the **image** of A' under f. We call f(A) the **range** of f.
- $f^{-1}(b) = \{a \in A \mid b = f(a)\}.$
- $f^{-1}(B') = \{a \in A \mid a \in f^{-1}(b) \text{ for at least one } b \in B'\}$

If f is one-to-one and onto then $f^{-1}(b)$ always consists of a single element and we regard f^{-1} as a function from B to A. In this case we say f is **invertible**.

A binary operation is a function from the cross product of two sets to a third set. For example, the adding of two numbers is a binary operation from $\mathbb{R} \times \mathbb{R}$ to \mathbb{R} . So is multiplication. For any binary operation $f: A \times B \to C$, if $a_1 = a_2 \in A$ and $b \in B$ then $f(a_1, b) = f(a_2, b)$. For multiplication this means for real numbers a, b, and c, if a = b then ac = bc. Note that we have written f(a, b) instead of f((a, b)) since this shorthand is customary.

Example 1. Let $S = \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit, \Box, \circlearrowleft, \star\}$ and let $L = \{\alpha, \theta, \phi, \pi, \zeta\}$. Let $f: S \to L$ be defined as indicated by Figure 1. But what is f really? It is the set of arrows. But each arrow is a pictorial representative of an ordered pair. Thus $(\clubsuit, \alpha) \in f$ but $(\diamondsuit, \zeta) \notin f$. Or, equivalently, $f(\clubsuit) = \alpha$ while $f(\diamondsuit) \neq \zeta$. This function is not one-to-one since, for example, $f(\clubsuit) = f(\bigcirc)$. It is not onto since there is no $x \in S$ such that $f(x) = \zeta$, that is, for every $x \in S$, $(x, \zeta) \notin f$. Or, we could say ζ is not in the range of f.

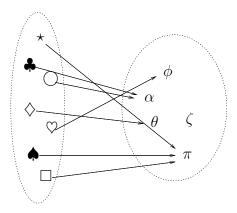


Figure 1: A function

If we order the elements of S and L then we can **graph** f. This is shown in Figure 2. We can see that the graph of f is a subset of $S \times L$. Notice that the familiar *horizontal line test* shows that f is not one-to-one, while the *vertical line test* confirms that f is indeed a function.

Additional Examples:

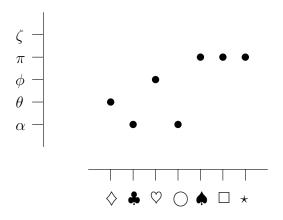


Figure 2: A graph of the function in Figure 1

- 1. The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is the set $\{(x,y) \in \mathbb{R}^2 \mid y = x^2\}$. Thus, you can think of the function f as the graph in the plane \mathbb{R}^2 .
- 2. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Then $f^{-1}(4) = \{-2, 2\}$, $f^{-1}([0, 1]) = [-1, 1]$, and $f^{-1}([1, 9]) = [-3, -1] \cup [1, 3]$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin \pi x$. Then $f^{-1}(0) = \mathbb{Z}$, and $f^{-1}([0,1]) = \cdots \cup [-4,-3] \cup [-2,-1] \cup [0,1] \cup [2,3] \cup \cdots$
- 4. Let $A = \{1, 2, 3, ...\}$. Then the set $\{(1, 2), (2, 3), (3, 4), ...\} \subset A \times A$, is the function $f: A \to A$ produced by adding a one: f(n) = n + 1. It is one-to-one but not onto. But if we let $B = A \{1\}$ and let $g: A \to B$ be addition by one, then g is onto.
- 5. Let $A = \{2,3\}$. Let $f = \{(2,3),(3,3)\}$, $g = \{(2,3),(3,2)\}$, and $h = \{(2,2),(2,3)\}$. Then, f is a function from A to A that is not one-to-one or onto, g is a one-to-one onto function from A to A, while h is not a function. Check that $g^{-1}(f(3)) = 2$ and that f(g(f(x))) = g(f(g(x))) for both $x \in A$.

Problems:

1. a. Solve $\log_2 \sin x = -\frac{1}{2}$. b. Let $h(x) = \log_2 \sin x$ for $x \in [0, \frac{\pi}{2}]$. Find an expression for the inverse of h.

- c. Suppose f and g are invertable functions and that $k = f \circ g$ is well defined. What is k^{-1} ?
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^2 + y^2$. Draw a picture of $f^{-1}([4,9])$. Recall: $[4,9] \subset \mathbb{R}$ is the closed interval from 4 to 9. Hint: What is $f^{-1}(4)$?
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \sin x \cos y$. Find $f^{-1}(0)$ and $f^{-1}(1)$. Draw pictures of them.
- 4. Let $f: \mathbb{R} \to \mathbb{R}^2$ be defined by $f(x) = (x, x^2)$. Show that f is one-to-one but not onto.
- 5. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x,y) = (x+y,x+y). Show that f is neither one-to-one nor onto. Describe the range of f.
- 6. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by f(x,y) = (3x+2y,x-y). Show that f is one-to-one and onto. Find f^{-1} . What is the image of $\{(x,y) \in \mathbb{R}^2 \mid x=y\}$?