1 Vector Spaces in R"

Definition 1.1. A nonempty subset V' of some R" is a Vector Space if
these two properties hold:

1. If v and w are both in V then their vector sum v + w is in V.

2. If veV and r € R then their scalar product rv is in V.

These are called closure axioms. The idea is that when we do these
operations in V' we stay within V. Thus, we can think of V' as a closed
universe, a space onto itself.

Example 1. The solution set P of y = 2? is not a vector space. Proof:
(1,1) € P and 2 € R but 2(1,1) = (2,2) is not in P.

Example 2. The unit circle in R?, denoted U, is not a vector space. Proof:
The points (1,0) and (—1,0) are both in U, but (1,0) + (—1,0) = (0,0) is
not in U.

Example 3. Any line in R? that goes through the origin is a vector space.

Proof 1. Let L be the points of a line passing through (0,0). We can let
Az + By = 0 be an equation whose solution set is L. Suppose (a,b) and
(¢,d) are on L and let » € R. We must show that (a + ¢,b+ d) and (ra,rb)
are on L. We do this by checking that they satisfy the equation Az+ By = 0.

Ala+c)+ B(b+d) = Aa+ Ac+ Bb+ Bd =
(Aa+ Bb) + (Ac+ Bd) =0+ 0=0.
And,
A(ra) + B(rb) = r(Aa + Bb) = r0 = 0.
Thus, the vector space axioms are satisfied. O

Proof 2. Let L be the points of a line passing through (0,0). Then L has a
parametric equation of the form

(x(t),y(t)) = vt,

where v is a vector in R?. TLet r € R and let (z1,y1) and (z2,y2) be
any two distinct points in L. Thus, there exist real numbers, ¢; and to,
such that (xy,y1) = vty and (x2,y2) = vte. Then r(xi,y1) = vrt; and
(x1 4 22,91 + y2) = v(t1 + t2). Hence, L is closed under vector addition and
scalar multiplication. O



Remark. Vector spaces are sometimes called linear spaces.

Problem 1. Prove that the solution set of y = 22 + 1 fails to be a vector
space.

Problem 2. Prove that any line passing through the origin of R? is a vector
space.

Problem 3. Prove that any plane passing through the origin of R3 is a
vector space.

Problem 4. Prove that the plane with equation x+y+ 2z = 1 is not a vector
space. (Do not use the Fact below.)

Fact. Every vector space contains the origin. Proof: Let V be a vector space.
Since a vector space is nonempty we can pick a v € V. Then Ov = 0, so the
origin, 0, is in V.

Problem 5. Prove that the subset of R™ containing just the origin, {0} =
{(0,...,0)}, is a vector space.

Problem 6. Prove that the solution set of Ax = 0 is a vector space for
any m X n matrix A, but that the solution set of Ax = b for b # 0 is not.
(Remember, the empty set is not a vector space.) Note: a system of the form
Ax = 0 is called homogeneous and its solution set is called the null space
of the matrix A.

Problem 7 (Subtle). Show that Problems 2 and 3 are can be viewed as
special cases of problem 6. What about Problems 1 and 47

Example 4 (For class discussion). What are all of the vector spaces in R??
What about R"?

Problem 8. Let V and W be vector spaces in some R".
a) Prove that V N is always a vector space.
b) Give an example showing that V' U W need not be a vector space.

Example 5. Let {vy,vo} C R". Let W = {ryvy + rovy |7, 79 € R}. Then
W is a vector space. (W is called the span of {vy,va}.)

Proof. Every element of W is a vector in R™. Let u and v be in W and let
r be any real number. We can write u = avy 4+ bvy and v = c¢vy + dv,. Then
ru = ravy + rbvy which is in W since ra and rb are real numbers. Also,
u+v=_(a+c)vi+ (b+d)veisin W. Thus, W is a vector space. O
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Example 6. A set of matrices can sometimes be thought of as a vector space.
For example the set of 3 x 3 matrices is really just R, since matrix addition
behaves like vector addition and multiplying a scalar and a matrix is just
like multiplying a scalar and a vector. However, when thinking of matrices
in this way we are ignoring matrix multiplication; it is not defined for vector
spaces.

Example 7. Consider the set of 3 x 3 symmetric matrices. The sum of two
symmetric matrices is still symmetric and scalar multiplication also preserves
the symmetry. We can think of this set as a 6 dimensional vector space sitting
inside of R?. Why?

2 Abstract Vector Spaces

It often happens that a set that is not a subset of any R"™ still has prop-
erties very much like those of a vector space.

Example 1. Adding polynomials is a lot like adding vectors and we can
think of multiplying a polynomial by a real constant as an analog of scalar
multiplication. Let C' be the set of cubic polynomials and let P3; be the set
of all polynomials of degree 3 or less. If p(z) = 2° + 2 and ¢(z) = v — 23
then p(z) 4+ ¢(x) is not a cubic polynomial. Thus, C' does not behave like a
vector space. But P3 does act very much like a vector space. It is “closed”
under polynomial addition and multiplication by scalars. (Although, Pj is
not “closed” when we multiply one polynomial by another.)

Example 2. The solution set S of the differential equation y” = —y, that is
the set of all real functions f(x) such that f”(z) = —f(x), is a like a vector
space. If f and g are both in .S and r € R then the reader should be able to
check that f(x)+g(x) and rf(z) are also in S. Thus, the algebraic structure
of S is much like that of a vector space. We challenge the reader to figure
out what the set S is.

Example 3. The set of convergent infinite series can be thought as vector
space. Suppose r € R and that ¥:°,a; and X5°,b; both converge to finite
limits. Then, it is shown in calculus that ¥2°,a; + b; and 32°,ra; both
converge to finite limits.



Definition 2.1. An Abstract Vector Space is a nonempty set V' together
with two binary operations called vector addition (V xV — V') and scalar
multiplication (R x V' — V) that obey the following axioms.

I. Closure axioms':

a. Vector addition is closed: v +w € V for all vand win V.

b. Scalar multiplication is closed: rv € V for all v.e V and r € R.

IT. Algebraic axioms:
a.v+w=w+v, forallv,we V. (commutativity)
b.u+ (v+w)=(u+v)+w,forall v,w,ue V. (associativity)
c. There exists z € V', such that z + v = v,

forallveV. (additive identity)
d. For each v € V', there exists v € V such that
V+v=2z (additive inverses)

e.r(v+w)=rv+rw, forallr e Rjv,we V. (distributivity)
f.(r+s)jv=rv+sv, forallr,secRvelV. (distributivity)

g. r(sv) = (rs)v, for all r,s € R,
and ve V. (associativity of scalar multiplication)

h. lv=v, forallveV (scalar multiplicative identity)

Abstract vector spaces are often referred to simply as vector spaces when
no confusion can arise. The list of algebraic axioms may seem quite cum-
bersome. However, they are very natural and you should soon get used to
them.

Some Quick Facts: The following properties will be derived for vector
spaces from the above axioms and the axioms of arithmetic:

a. A vector space has only one zero element. Proof: Suppose z and u are
both zero elements of a vector space. Then u=z+u=u+2z = z. So,
u and z must be the same.

LStrictly speaking the closure axioms are implicit in the definition of a binary operation.
However, we have chosen that state them explicitly because of their importance in the
theory of vector spaces.



o From now on we shall denote the zero element by 0 and refer to it as
the unique zero element.

b. For any v, Ov is the zero element. Proof: v .= 1v = (1 +0)v =
1v 4+ 0v = v + 0v. Now v has an additive inverse v. Add this to both
sides: v+Vv = v+v+0v. This gives 0 = 0+ 0v, which implies 0 = Ov.

c. For any r € R, r0 = 0. Proof: Problem 1.
d. If rv = 0, then either » = 0 or v = 0. Proof: Problem 2.

e. Additive inverses are unique. Proof: Let v be in a vector space. Sup-
pose that v and v are both inverses of v. Then v=v+0=v+v+4v =
v+v+v=0+v=v. So, vand v are the same.

f. Forany v, —1v =v. Proof: v+—1lv=1v+—-1lv=(1-1)v =0v = 0.
Thus, —1v = v by uniqueness.

¢ From now on we shall denote the additive inverse of v by —v.

The forgoing may strike the reader as unnecessary. Are not these results
obvious? The answer is that they are not. Further, the mental discipline
needed to construct the proofs is of value in itself. Thus, you may be tested
on these proofs. It may also seem that the last axiom, ITh, is obvious. But in
fact it does not follow from the previous axioms as you will show in Problem 5
below.

Example 4. The set P; of polynomials of degree three or less, is a vector
space. We shall check each axiom of Definition 2. We do this in excruciating
detail for the record; normally one would combine many of the obvious steps.
Do not be shocked if you find a couple of typos.

la. (az® +bx* +cx+d)+ (ex® + fa* + gz + h) = (a+ e)z’ + (b+ f)z* +
(c+g)x+(d+h) € Py

Ib. r(az® + bz? + cx + d) = raz® + rba* + rex + rd € Py

Ha. (ax®+bx? +cx +d) + (ex® + fr2 + gr+ h) = (a +e)xd + (b+ f)z? +
(c+g)x+ (d+h) = (e+a)s®+ (f +b)2? + (g+ )z + (h+ d) =
(ex® + fa* + gz + h) + (az® + ba? + cx + d)



Ib. [(az® +bx* + cx +d) + (ex® + fx* + g + h)] + (iz® + ja* + kx + 1) =
(la+el+0)x>+(b+e +7)2>+ ([c+g]l+k)x+ (d+h+1) =
Ea+[e+i])x3+(b—|—[e+j])$2+(c+[g+k])x+(d+[h+l]) =

az® + br? + cx + d) + [(ex® + fa? + gz + h) + (ix® + ja? + ka + )]
IIc. Use 0 = 02 + 022 4+ 0z + 0 € P3 as the zero element.
IId. Given v € P; use —1 times v as the inverse.

He. r[(az®+bx®+cx+d)+ (ex® + fr* + gz +h)] = r[(a+e)x® + (b+ f)a® +
(c+g)z+(d+h)])=rla+e)a®+rb+ fla*+r(c+g)z+r(d+h) =
(ra+re)x®+ (ro+rf)x*+ (re+rg)x+ (rd+rh) = (raz® +rbx* +rex +
rd)+(rex®+rfa*+rgr+rh) = r(ax®+br*+cx+d)+r(ex®+ fa2+gx+h)

If. (r+s)(az®+bz*+cr+d) = (r+s)ax®+(r+s)bz’+ (r+s)ce+(r+s)d =
(ra+sa)z®+ (ro+sb)x® + (rc+ sc)x + (rd+ sd) = (rax®+rbx® +rex +
rd)+(sax®+sbr*+scr+sd) = r(ax® +br?+cr+d)+s(ax’® +br* +cx+d)

g. r(s(ax®+ba?*+cr+d)) = r(sax®+sbx®+scx+sd) = r(sa)x®+r(sb)z*+
r(sc)z +r(sd) = (rs)az® + (rs)bx?® + (rs)cx + (rs)d = (rs)(az® + bx? +
cx +d)

ITh. 1(az® + bz + cx +d) = ax® + ba* + cx + d

Problem 3. a) Prove that the set in Example 2 is vector space.
b) Prove that the set in Example 3 is vector space.

Problem 4. Let Z be the set of continuous functions that are zero at zero.
Let T be the set of continuous functions that are two at zero. It each case we
define vector addition and scalar multiplication in the obvious way. Convince
yourself that Z is indeed a vector space. However, T is not a vector space.
For example, T' is not closed under vector addition or scalar multiplication.
For each axiom of Definition 2 either give an example showing it fails for T’
or prove that it does hold for 7. (Note: To prove T is not a vector space it
is enough to find one example where one axiom fails.)

Problem 5. Consider the set R? with the usual vector addition but with
scalar multiplication defined as follows: r(z,y) = (rz,0). Show that axioms
Ia-b and ITa-g hold but that ITh is false.



Example 5 (For class discussion). Which of the following sets of functions
do you think are vector spaces? Use the usual definition of the addition of
functions and of multiplying a function by a number for vector addition and
scalar multiplication respectively.

1.
2.

10.

11.

12.
13.

3

The set F' of all functions from R to R.

The set of all continuous functions from R to R.
The set of all polynomial functions from R to R.
The set E of all even functions from R to R.

The set O of all odd functions from R to R.

. What about FUO and ENO?

Let T > 0. The set of all functions from R to R with period T'.

The set of all positive functions from R to R.

. Let [a,b] be an interval on the real line. The set of all functions from

[a,b] into R with fab f(x)dx = 0.

Let [a,b] be a interval on the real line. The set of all functions from
[a, b] into R with fab f(z)dx =1.

The set of all functions y = f(z) such that 2y’ +y = 0. This set is
called the solution set of the differential equation, 2y’ + y = 0.

The solution set of 2y’ +y = 7.

The solution set of y” = z2. What is this solution set?

Subspaces

Definition 3.1. Let V' be a vector space and let W be a nonempty subset
of V. If W also has a vector space structure (using the same operations as
on V') then we say W is a subspace of V.

Theorem 3.2. If W is a nonempty subset of a vector space V then W 1is a
subspace of V' if the two closure axioms of Definition 2 hold.
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Before giving a proof we shall do an application.

Example 1. The set P; of polynomials of degree three or less is a subset
of the set of functions, which is a vector space. Using Theorem 3.2 we only
need to check axioms Ia and Ib to see the Pj is a vector space.

Proof of Theorem 3.2. Let W C V, where V is a vector space. Assume
axioms la and Ib hold for W and that W is not empty. We need to check
axioms [Ia-h.

IIa.
IIb.
I1Ic.

I1d.
IIe.
I1f.
IIg.
ITh.

Since Ila holds for all vectors in V', it holds for all vectors in W.
The same argument works.

Take any element w € W. Then by Ib Ow € W. Now, 0 = Ow. Thus
OcW. ForanyveVand 0+v=vso0+v=vforany veW.
Hence 0 serves as the zero element of A.

Similar to Ilc.
Same as [a.
Same as [la.
Same as Ila.
Same as [a.

O

Problem 1. Prove whether or not each of the sets below is a vector space.

The closed interval [—2,5] in R.
The closed ray [0, c0) in R.
{(z,y) e R?[|z] = |y[}

{(z,y) e R?*| zy = 0}

(
(
(
(

)

)
A(z,y) e R* |z + 3y =0}

)

{(x,y) e R? |z + 3y = 4}



A(z,y,2) eR3|3x+ 2y — 2 =0}
Alx,y,2) e R oy + 23 =0}

i {(x,
A
A
. A(a,b,c,d,e, f,9) € RT|d =0}

,2) € R3 | 2?yz" =1}

<

(
(
(
(w,z,y,2) € R*|w+ 3z + 2y — 2 = 0}
(w,z,y,2) € R*|w+ 3z + 2y — 2 = 2}
(w,z,y,2) ERY|w+x+y+ 22 =0}
(

Az, y,2) eR3| 22+ 9%+ 22 =0}

A, y,2) eR3|2? +y? + 22 =4}

. The set of functions {f : R — R | f(3) = f(5) = 0}.
. The set of functions {f : R — R| f(3) = f(5)}.
. The set of functions {f : R — R | f(3) = f(5) = 2}.

. The set of functions {f : R — R |for all @ and = in R, f(azx) = af(x)}.
. {asinz + beos z* + ce® + dx® | for all real values of a, b, ¢, &d}.

. The solution set of 3 + z3y = 0.

. The solution set of y” + 3y’ + 4y = 0.

. The solution set of ¥’ + x3y? = 0. Hint: y = 4/2% is a solution.

. The solution set of 3 + z3y = 5.

. All functions from (0, 00) into R that can be written in the form In(z%)
for some real constant a

. All functions from R into R that can be written in the form sin(ax) for
some real constant a.

. The set of all noninvertible 2 x 2 matrices.

. The set of all 4 x 4 diagonal matrices.
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7. The set of all 3 x 3 matrices such that AT = A.
Answe?"s" n7 n7 n7 n7 y’ n’ Y7 n7 n7 y7 n7 n7 y7 n7 n7 n7 Y7 n7 y7 Y7 n7 y7 Y7 y’ Y7 n7

n, y, n, n, y, y, respectively.
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