Realizing full n-shifts in simple Smale flows

Michael Sullivan
mikesullivan (at) math (dot) siu (dot) edu
http://www.math.siu.edu/sullivan

Southern Illinois University - Carbondale

May 2015

49th Spring Topology and Dynamical Systems Conference

Bowling Green State University, Ohio

Smale Flows

Let ${\mathcal M}$ be a smooth compact connected 3-manifold with or without boundary.

A nonsingular Smale flow **(NSF)** on \mathcal{M} is a structurally stable flow with one-dimensional chain recurrent set \mathcal{R} . It is hyperbolic on \mathcal{R} and the stable and unstable manifolds only meet transversely. The term was introduced by John Franks in the 1970's.

The chain recurrent set, by a theorem of Smale, consists of a finite number of disjoint **basic sets**, which are compact and transitive. A basic set may be an **attractor**, **repeller** or **saddle set**.

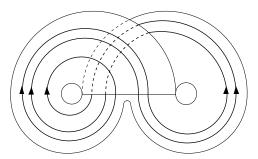
Attractors and repellers are necessarily isolated closed orbits. A basic saddle set may be an isolated closed orbit or the suspension of a nontrivial shift of finite type - we call these **chaotic saddle sets**.

() July 12, 2015 2 / 18

Knots and Templates

Basic sets that are closed orbits form knots. Chaotic basic sets contain infinitely many knots and knot types. [Franks & Williams, 1985]

To get a handle on chaotic saddle sets we use **templates**. These are branched two manifolds with semi-flows formed by taking an isolating neighborhood and collapsing out the local stable manifolds. [Birman & Williams, 1983]

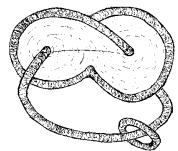


Simple Smale Flows

We will be working with nonsingular Smale flows on S^3 with three basic sets:

- An attracting closed orbit, a
- A repelling closed orbit, r
- A chaotic saddle set, cs

Isolating nbhds of the basic sets can be glued together, using diffeomorphisms that match the vector fields, to form the ambient manifold, S^3 .



Full N-shift Spaces

Definition

Given a set of n symbols the full n-shift space is the set of all bi-infinite sequences of the symbols (i.e., there are no forbidden words), together with a shift homoemorphism.

Using a theorem of Franks [1985], it is easy to show that for each n-shift there exists a simple Smale flow whose saddle set has the n-shift map conjugate to the first return map of some cross section.

Franks' theorem does not tell us the knot types of a and r.

July 12, 2015 5 / 18

Incidence and Structure Matrices

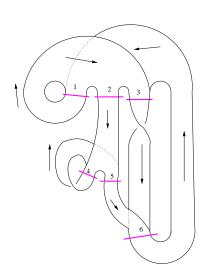
But, another result of Franks' will give the unsigned linking number of a and r.

Let D_1, D_2, \dots, D_n be cross sectional disks for Markov partition. Assume these are "small enough" for the definitions below to work.

Incidence Matrix: Let $A = [a_{ij}]$ be given by $a_{ij} = 1$ if there is a orbit directly from D_i to D_j and be zero otherwise.

Structure Matrix: Let $S = [s_{ij}]$ be given by $s_{ij} = \pm a_{ij}$, with "-" meaning the first return map is orientation reversing.

An Example



()

```
\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}
```

7 / 18

July 12, 2015

Linking Numbers

Theorem (Franks 1981)

In a simple Smale flow the unsigned linking number of a and r is the determinant of I minus the structure matrix,

$$|\mathit{lk}(a,r)| = |\det(I-S)|.$$

Corollary

For a simple Smale flow with saddle set a suspension of the n-shift we have

$$lk(a,r) = \begin{cases} even & if n is odd, \\ odd & if n is even. \end{cases}$$

July 12, 2015 8 / 18

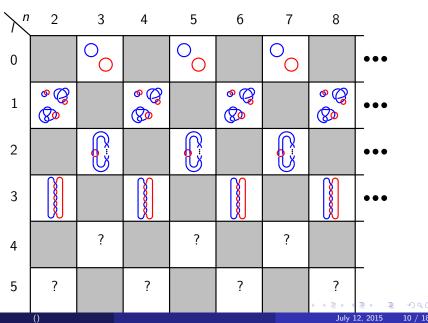
Main Theorem

Theorem

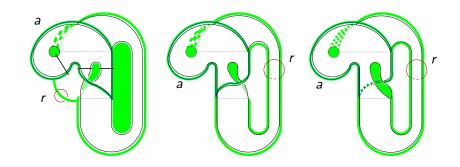
- A. Let $n \ge 3$ be odd. There exists a simple Smale flow on S^3 such that the saddle set is a suspension of a full n-shift, with $a \cup r$ unlinked unknots, s.t. (i) the a (r) links every closed saddle orbit but one and the r (a) links no other closed orbits, (ii) both a and r link every closed saddle orbit but one, or (iii) neither links any other closed orbits.
- B. Let $n \ge 2$ be even. There exists a simple Smale flow on S^3 such that the saddle set is a suspension of a full n-shift, lk(a, r) = 1 and the pair $a \cup r$ can be any of, (i) a Hopf link, (ii) a trefoil and meridian, or (iii) a figure-8 knot and meridian.
- C. Let $n \ge 3$ be odd and p be any integer. There exists a simple Smale flow on S^3 such that the saddle set is a suspension of a full n-shift, lk(a,r) = 2, and a (resp. r) has braid word σ^{2p+1} and r (resp. a) is an unknot serving as a braid axis.
- D. Let $n \ge 2$ be even. There exists a simple Smale flow on S^3 such that the saddle set is a suspension of a full n-shift, lk(a,r) = 3, and the braid word for $a \cup r$ is σ^6 .

() July 12, 2015 9 / 1:

Table

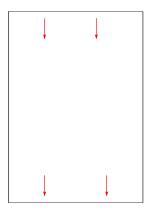


Case A. N = 3 L = 0

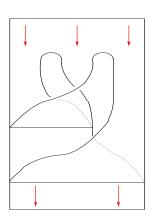


() July 12, 2015 11 / 18

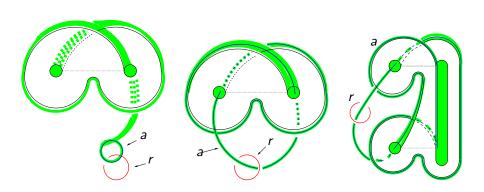
Induction Step



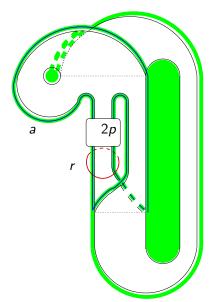
 α -move



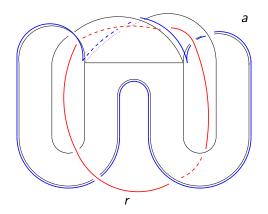
Case B



Case C



Case D



Conjecture

$I \setminus n$	2	3	4	5	6	7	8	<u> </u>
0	Ν	Y	Ν	Y	Ν	Y	Ν	
1	Y	Ν	Y	Ν	Y		Y	
2	Ν	Y	Ν	Y	Ν	Y	Ν	
3	Y	Ν	Y	Ν	Y	Ν	Y	
4	Ν	?	Ν	?	Ν	?	Ν	
5	?	Ν	?	Ν	?	Ν	?	
:	:	:	:	:	:	:	:	٠

Conjecture

AII ? = Y.

Questions

What about allowed knot types? Whitehead links?

(

Remark

A not as yet submitted paper by Beguin, Bonatti and Bin Yu gives some restrictions on the link type of $a \cup r$.

For example you cannot have two unlinked nontrivial knots

Their work seems to exclude the Whitehead link although they do not state this.

References

- Birman and Williams, Knotted Period Orbits in Dynamical System I: Lorenz Knots, Topology 2 (1983) 47–82.
- Franks, Knots, links and symbolic dynamics. Ann. of Math. (2) 113 (1981), no. 3, 529552.
- Franks, Symobolic Dynamics in flows on three-manifolds, *Trans.Amer. Math. Soc.*, Vol 279, No. 1 (1983), 231–236.
- Franks, Nonsingular Smale Flows on S^3 Topology, 24 (3) (1985) 265–282.
- Franks and Williams, Entropy and knots, Trans. Amer. Math. Soc., 291 (1985) 241–253.
- Smale, Differentiable dynamicsl systems, Bull. Amer. Math. Soc. 73(1967), 797–817.
- S., Visually building Smale flows in S^3 , Topology and Its Applications 106 (2000), no. 1, 1–19.

July 12, 2015 18 / 18