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ż(t) = −0.7061z + 0.1x2



Robinson’s Attractor and Templates
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ż(t) = −0.7061z + 0.1x2



Infinitely Many Realizations

Every template has infinitely many knot types that can be realized.
[Franks & Williams]

On L(0, 0) there are inifinitely many realizations of any knot type
that is realized.

This does not hold for the Lorenz attractor.

On L(−1,−1) there are inifinitely many realizations of any knot
type that is realized.

This holds for Robinson’s attractor.
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Linking Comparison

On L(0, 0) any pair of knots, not containing x or y , are linked.
Thus, any two closed orbits in a Lorenz attractor are linked.

On L(−1,−1) the situation is a bit different. For orbits in
L(−1,−1) we have the following.

a. The orbit for xy is unlinked with all other closed orbits.

b. The orbit for x is unlinked to orbits of the form xyn and the
orbit for y is unlinked to orbits of the form xny ,

c. Any pair of closed orbits not covered by (a) or (b) are linked.

For the proof see the next frame.
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Lorenz Knots are Positive Braids

Figure is from Birman and Williams’ 1983 paper



Lorenz Knots are Positive Braids

Figure is from Birman and Williams’ 1983 paper



Lorenz Knots are Positive Braids

Figure is from Birman and Williams’ 1983 paper



Positive Braids

Fact: Postive braids with a full twist are prime. [Cromwell]
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L(−1,−1) has compisite knots



What are Fibered Knots?

Every knot bounds an orientable surface. Seifert developed an
simple algorithm finding one.

Figure from: http://www.win.tue.nl/

∼vanwijk/seifertview/knot gallery.htm

If S3 − N(K ) can be fibered by a Seifert surface of K , then K is a
fibered knot.
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Positive Knots

A knot is a positive knot if it can be presented with a diagram with
only one crossing type.

A positive knot need not be a positive braid. The five-knot is an
example.

http://katlas.org/wiki/File:Blue Three-Twist Knot.png
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Not all are positive briads

Example: The orbit with word xy4x2yx4y2 in L(−1,−1) can be
presented as the following braid on five strands, (322332322214̄)2.
A calculation shows that its Conway polynomial has leading
coefficient 3. [S., 2005] Hence it is not a positive braid. [James M.
van Buskirk, 1983]
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But, all L(−1,−1) Knots are Fibered

Hence the five-knot is not realized in Robinson’s attractor.

The proof is a bit complicated to present here, but it closely
follows Stallings’ proof that postive briads are fibered. We give an
brief outline.
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Outline of Proof

Let K be a knot with Seifert surface F .

Define a push off map ν : F → S3 − F .

Consider the induced map ν∗ : π1(F , b)→ π1(S3 − F , ν(b)).

If ν∗ is an isomorphism, then K is fibered. [Stallings]



Outline of Proof

Let K be a knot with Seifert surface F .

Define a push off map ν : F → S3 − F .

Consider the induced map ν∗ : π1(F , b)→ π1(S3 − F , ν(b)).

If ν∗ is an isomorphism, then K is fibered. [Stallings]



Outline of Proof

Let K be a knot with Seifert surface F .

Define a push off map ν : F → S3 − F .

Consider the induced map ν∗ : π1(F , b)→ π1(S3 − F , ν(b)).

If ν∗ is an isomorphism, then K is fibered. [Stallings]



Outline of Proof

Let K be a knot with Seifert surface F .

Define a push off map ν : F → S3 − F .

Consider the induced map ν∗ : π1(F , b)→ π1(S3 − F , ν(b)).

If ν∗ is an isomorphism, then K is fibered. [Stallings]



Outline of Proof

Let K be a knot with Seifert surface F .

Define a push off map ν : F → S3 − F .

Consider the induced map ν∗ : π1(F , b)→ π1(S3 − F , ν(b)).

If ν∗ is an isomorphism, then K is fibered. [Stallings]



Outline of Proof

If F has minimal genus, then ν∗ is injective. [Stallings]

If K is positive, the surface constructed by Seifert’s algorithm has
minimal genus. [Stallings]

We construct a Seifert surface in a clever way and show it has
minimial genus.

Then we show that having all the twists of the same type forces ν∗
to be surjective.
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Not Many Knots

There are 2977 prime knots with crossing number 12 or less.

There are 33 prime knots with crossing number 12 or less that are
fibered and known to be positive. In addition, there are seven
prime knots with crossing number 12 that are fibered and whose
positivity statuses are unknown.

We also note that no prime positive fibered knot with crossing
number 12 is alternating.

See: http://www.indiana.edu/∼knotinfo.

Thus, while it is known that any template supports infinitely many
distinct knot types the collection of prime knots in L(−1,−1)
seems rather narrow.
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