The Axioms of Arithmetic\(^1\)

Let’s play a game. Let \(R \) be a nonempty set. A \textbf{binary operation} is a function from \(R \times R \) to \(R \). That is a binary operation takes two elements from \(R \) and outputs a single element of \(R \). We shall suppose that we have two binary operations on \(R \). The first is called \textit{addition}. Given \(a \) and \(b \) in \(R \) addition gives an element \(a + b \) in \(R \). The other is called \textit{multiplication}. Given \(a \) and \(b \) in \(R \) multiplication gives \(a \cdot b \in R \). We shall assume that these two operations obey the axioms listed below. The game is to prove facts about \(R \) based solely on these axioms.

\textbf{Axioms:} For all \(a, b \) and \(c \) in \(R \) the following hold.

\begin{enumerate}
 \item \(a + b = b + a \) \hspace{1cm} \text{(addition is commutative)}
 \item \(a + (b + c) = (a + b) + c \) \hspace{1cm} \text{(addition is associative)}
 \item There is an element \(z \in R \),
 independent of \(a \),
 such that \(z + a = a \) \hspace{1cm} \text{(an additive identity exists)}
 \item There is an \(\bar{a} \in R \),
 which depends on \(a \),
 such that \(\bar{a} + a = z \) \hspace{1cm} \text{(additive inverses exist)}
 \item \(a \cdot b = b \cdot a \) \hspace{1cm} \text{(multiplication is commutative)}
 \item \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \) \hspace{1cm} \text{(multiplication is associative)}
 \item There is an element \(u \in R \),
 independent of \(a \),
 such that \(u \cdot a = a \) \hspace{1cm} \text{(a multiplicative identity exists)}
 \item If \(a \) is not an additive identity,
 there is an \(\hat{a} \in R \),
 which depends on \(a \),
 such that \(\hat{a} \cdot a = u \) \hspace{1cm} \text{(multiplicative inverses exist)}
 \item \(a \cdot (b + c) = a \cdot b + a \cdot c \) \hspace{1cm} \text{(multiplication distributes over addition)}
\end{enumerate}

\textbf{Applications:}

\(^{1}\)©Michael C. Sullivan, September 14, 2001
1. There is only one additive identity element in \(R \). \textbf{Proof:} Suppose \(z_1 \) and \(z_2 \) are both additive identity elements. Then by (c) \(z_1 + z_2 = z_2 \) and \(z_2 + z_1 = z_1 \). But, by (a), \(z_1 + z_2 = z_2 + z_1 \). Thus, \(z_1 = z_2 \).

We are now justified in saying that the “zero element” is unique and shall denote it by 0.

2. There is only one multiplicative identity element in \(R \). \textbf{Proof: Problem 1.} The unique “unity element” shall be denoted by 1.

3. Additive inverses are unique. \textbf{Proof 1:} Let \(a \in R \). Suppose \(\bar{a}_1 \) and \(\bar{a}_2 \) are additive inverses of \(a \). Then \(\bar{a}_1 = 0 + \bar{a}_1 = (\bar{a}_2 + a) + \bar{a}_1 = \bar{a}_2 + (a + \bar{a}_1) = \bar{a}_2 + (\bar{a}_1 + a) = \bar{a}_2 + 0 = \bar{a}_2 \). The reader should check that each step used exactly one of the axioms. \textbf{Proof 2:} \(a + \bar{a}_1 = 0 \Rightarrow \bar{a}_2 + (a + \bar{a}_1) = \bar{a}_2 + 0 \Rightarrow (\bar{a}_2 + a) + \bar{a}_1 = \bar{a}_2 \Rightarrow 0 + \bar{a}_1 = \bar{a}_2 \Rightarrow \bar{a}_1 = \bar{a}_2 \). Note that we have used a basic property of all binary functions in adding \(\bar{a}_2 \) to both sides of an equation and have freely used more than one axiom per step.

4. Multiplicative inverses are unique. \textbf{Proof: Problem 2.}

5. Let \(a \in R \). Then \(a \cdot 0 = 0 \). \textbf{Proof:} \(a \cdot 0 = a \cdot 0 + 0 = a \cdot 0 + (a + \bar{a}) = (a \cdot 0 + a) + \bar{a} = (a \cdot 0 + a \cdot 1) + \bar{a} = a \cdot (0 + 1) + \bar{a} = a \cdot 1 + \bar{a} = a + \bar{a} = 0 \).

The reader should check each step to see which of the axioms are being applied.

6. Let \(a \in R \). Then \(\bar{a} = a \). \textbf{Proof: Problem 3.} Hint: Start with \(\bar{a} = \bar{a} + 0 \).

7. Let \(a \in R \). Then \(\bar{a} = \bar{1} \cdot a \). \textbf{Proof:} Since additive inverses are unique we need only show that \(a + \bar{1} \cdot a = 0 \). \(a + \bar{1} \cdot a = 1 \cdot a + \bar{1} \cdot a = a \cdot 1 + a \cdot \bar{1} = a \cdot (1 + \bar{1}) = a \cdot 0 = 0 \). Notice the last step uses 5.

8. Let \(a \in R - \{0\} \). Then \(\hat{a} = a \). \textbf{Proof: Problem 4.}

9. Let \(a \) and \(b \) be in \(R \) and suppose that \(a \cdot b = 0 \). Then either \(a = 0 \) or \(b = 0 \). \textbf{Proof: Problem 5.}

10. Let \(a + c = b + c \). Then \(a = b \). \textbf{Proof: Problem 6.}

11. \textbf{Problem 7:} Let \(ac = bc \). Show that it need not follow that \(a = b \).
If we let R be the real numbers \mathbb{R} then the axioms apply to the normal addition and multiplication operations. It is customary to denote the additive inverse of a by $-a$ and its multiplicative inverse by a^{-1} or $1/a$, for $a \neq 0$.

Problem 8. Prove that $-1 \times -1 = 1$.

If we let R be rationals \mathbb{Q}, or the complex numbers \mathbb{C}, then the axioms still apply. This is clear for \mathbb{Q}. But for \mathbb{C} it takes a bit of effort to show this. For the integers \mathbb{Z} only axiom h fails to hold.

Problem 9. It is easy to check that \mathbb{C} obeys axioms a through g and i. The only difficulty is axiom h. Let $a + ib \in \mathbb{C} - \{0\}$. Find $c + id \in \mathbb{C}$ such that $(a + ib)(c + id) = 1$, and thus establish axiom h. (It is to be understood that a, b, c and d are real numbers.)

Project 1. Let $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$. Define addition and multiplication as follows. Let $a \oplus b$ be the remainder of $a + b$ divided by n and let $a \otimes b$ the remainder of $a \times b$ divided by n. For example, in \mathbb{Z}_7 we get $5 \oplus 5 = 3$, because $10 \div 7$ has remainder 3; and $4 \otimes 5 = 6$, because $20 \div 7$ has remainder 6. The set \mathbb{Z}_n is called the integers modulo n and the operations are referred to as modular arithmetic.

(a) Show that \mathbb{Z}_n satisfies axioms a through g and i.

(b) Show that \mathbb{Z}_7 satisfies axiom h but that \mathbb{Z}_6 does not.

(c) Study various \mathbb{Z}_n. Under what conditions does \mathbb{Z}_n satisfy axiom h?