Lines and Planes

1 Lines in the Plane

Every line of points L in \mathbb{R}^2 can be expressed as the solution set for an equation of the form $Ax + By = C$. The equation is not unique for if we multiply both sides by any nonzero number the solution set is unchanged. Any line L can also be expressed by a pair of parametric equations of the form:

$$
\begin{align*}
 x(t) &= at + b \\
 y(t) &= ct + d
\end{align*}
$$

These can be rewritten in vector form: $\langle x, y \rangle = \langle a, c \rangle t + \langle b, d \rangle$. The vectors $\langle a, c \rangle$ and $\langle b, d \rangle$ have a nice geometric/physical interpretation. Regard t as time. Let $p(t) = \langle x(t), y(t) \rangle$ and call it the position vector. One can imagine a particle moving along L in accordance with the given parametric equations. Then $p(0) = \langle b, d \rangle$ is the initial position. Notice,

$$
\frac{dp}{dt} = \langle x'(t), y'(t) \rangle = \langle a, c \rangle
$$

Thus, we call $\mathbf{v} = \langle a, c \rangle$ the velocity vector. It is parallel to L. It is customary to place its base point on L. See Figure 1(left side).

We now give a geometric interpretation for the “ABC” form of an equation of a line. First, suppose $C = 0$; this just means the line L goes through the origin. Let $\mathbf{n} = \langle A, B \rangle$, and again set $\mathbf{p} = \langle x, y \rangle$. Then we have $\mathbf{n} \cdot \mathbf{p} = 0$. That is the vectors \mathbf{n} and \mathbf{p} are at right angles to each other. Thus, the line L for $Ax + By = 0$ is the set of all points (x, y) such that $\langle x, y \rangle$ is perpendicular to $\langle A, B \rangle$.

Now we consider the general case: $Ax + By = C$. Pick some particular point on the line and call it (x_0, y_0). Then $C = Ax_0 + By_0$. Therefore, for

\footnote{©Michael C. Sullivan, June 14, 2006}
any point \((x, y)\) on \(L\) we have \(Ax + By = Ax_0 + By_0\). We can rewrite this as

\[
\begin{align*}
Ax - Ax_0 + By - By_0 &= 0 \\
A(x - x_0) + B(y - y_0) &= 0 \\
\langle A, B \rangle \cdot \langle x - x_0, y - y_0 \rangle &= 0 \\
\mathbf{n} \cdot \langle x, y \rangle &= 0 \\
\mathbf{n} \cdot (\mathbf{p} - \mathbf{p}_0) &= 0
\end{align*}
\]

In the last line we have let \(\mathbf{p}_0 = \langle x_0, y_0 \rangle\). The vector \(\mathbf{p} - \mathbf{p}_0\) can be thought of as lying in \(L\) with its tail at \((x_0, y_0)\) and its head at \((x, y)\).

Thus, \(L\) is the unique line perpendicular to the vector \(\mathbf{n} = \langle A, B \rangle\) that passes through \((x_0, y_0)\). See Figure 1(right side). The vector \(\mathbf{n}\) is called a normal vector for the line \(L\). Given a vector to use as normal vector and a point we can easily find an equation for the corresponding line.

Figure 1: Left: A parametric line. Right: Normal vector to a line.

Problem 1. Consider the line determined by \(x(t) = 3t - 2\) and \(y(t) = -t + 7\). Find an equation for the line in ABC form.

Problem 2. Consider the line determined by \(4x - 7y = 2\). Find a pair of parametric equations for this line.

Note: Both of these problems have many correct answers.
2 Lines and Planes in 3-space

The three dimensional set \mathbb{R}^3 is the set of all triples (x, y, z) where x, y, and z are real numbers. Such a triple is called the xyz-coordinates of a point. These are also called rectilinear coordinates. The set $\{(x, 0, 0) \mid x \in \mathbb{R}\}$ is the x-axis. The y and z axes are defined similarly. They are clearly lines. The set $\{(x, y, 0) \mid x \in \mathbb{R}, y \in \mathbb{R}\}$ is the xy-plane. The yz and xz planes are defined similarly. Visualizing structures in three dimensions takes practice.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{3D-space.png}
\caption{Three dimensional space: \mathbb{R}^3}
\end{figure}

Any line L in \mathbb{R}^3 can expressed parametrically in the form:

\begin{align*}
x(t) &= at + b \\
y(t) &= ct + d \\
z(t) &= et + f
\end{align*}

or, in vector form, $\langle x, y, z \rangle = \langle a, c, e \rangle t + \langle b, d, f \rangle$. As with lines in \mathbb{R}^2 it is useful to think of $\langle a, c, e \rangle$ as a velocity vector and $\langle b, d, f \rangle$ as the position at $t = 0$.

However, there is no way to express a line in \mathbb{R}^3 as a single equation in three variables. In fact, we will show that “typically” solution sets of equations of the form $Ax + By + Cz = D$ are planes and that every plane in \mathbb{R}^3 is the solution set of some equation in this form. Note: If $A = B = C = D = 0$, the solution set is all of \mathbb{R}^3; if $A = B = C = 0$ but $D \neq 0$ the solution set is empty.
Example 1. Convince yourself of the following:

- If $A = B = D = 0$ and $C \neq 0$ then $Ax + By + Cz = D$ is the xy-plane.
- If $A = C = D = 0$ and $B \neq 0$ then $Ax + By + Cz = D$ is the xz-plane.
- If $B = C = D = 0$ and $A \neq 0$ then $Ax + By + Cz = D$ is the yz-plane.

Let’s consider the case where $D = 0$. Let $n = \langle A, B, C \rangle$ and $p = \langle x, y, z \rangle$. Then the equation $Ax + By + Cz = 0$ becomes $n \cdot p = 0$. Thus, the solution set is the plane P, passing through the origin of \mathbb{R}^3 whose points, when regarded as vectors, are perpendicular to n.

We return to the general case: $Ax + By + Cz = D$. Let $p_0 = \langle x_0, y_0, z_0 \rangle$ be some fixed point that satisfies the given equation. We leave it to the reader to show that

$$n \cdot (p - p_0) = 0.$$

Thus, the solution set of $Ax + By + Cz = D$ is the unique plane passing through p_0 and perpendicular to $n = \langle A, B, C \rangle$.

Example 2. Consider $x + y + z = 1$. The points $(1, 0, 0)$, $(0, 1, 0)$, and $(0, 0, 1)$ satisfy the equation. We can connect them with line segments and visualize the triangle thus formed. This triangle sits in the plane. If we place the tail of $n = \langle 1, 1, 1 \rangle$ at any point of the triangle it is easy to see that it is perpendicular to the plane.

Example 3. Let P_1 be the plane given by $2x + 3y - z = 5$ and let P_2 be the plane given by $x + y + z = 1$. Find parametric equations for the line $L = P_1 \cap P_2$.

Solution.

\[
\begin{align*}
2x + 3y - z &= 4 \\
x + y + z &= 1
\end{align*}
\]

$\implies y - 3z = 2$.

Let $z = t$. Then $y = 3t + 2$. Also, $x = 1 - y - z = -4t - 1$. We rewrite these as $\langle x, y, z \rangle = \langle -4, 3, 1 \rangle t + \langle -1, 2, 0 \rangle$.

Example 4. Find an equation for the plane passing through the three points $(1, 1, 1)$, $(1, 2, 3)$, and $(2, -1, 0)$.
Solution. We have three conditions and these give us three equations in four unknowns.

\[
\begin{align*}
A + B + C &= D \\
A + 2B + 3C &= D \\
2A - B &= D
\end{align*}
\implies
\begin{align*}
A + B + C &= D \\
B + 2C &= 0 \\
-3B - 2C &= -D
\end{align*}
\implies
\begin{align*}
A + B + C &= D \\
B + 2C &= 0 \\
C &= -D/4
\end{align*}
\implies
\begin{align*}
A &= 5D/4 \\
B &= D/2 \\
C &= -D/4
\end{align*}

Any nonzero value of \(D \) will do. Let \(D = 4 \). Then \(3x + 2y - z = 4 \) is an equation for our plane.

Problem 1. Consider the three points \((1, 1, 1)\), \((2, 0, 2)\), and \((4, -1, 4)\). Show that they do not determine a unique plane because they lie on the same line. Find an equation for this line; write it in vector form.

Problem 2. Let \(P \) be the plane given by \(x + 2y - 3z = 1 \). Let \(L_{xy} \) be the intersection of \(P \) with the \(xy \)-plane. Define \(L_{xz} \) and \(L_{yz} \) similarly. Find equations for these three lines in “ABC” form.

Problem 3. Graph, separately, each of the planes determined by these three equations: \(2x + 2y - 3z = 1 \), \(x + 2y + 4z = -1 \), and \(3x - 2y - 2z = 7 \).

Problem 4. Find the point of intersection of the three planes determined by these three equations: \(2x+2y-3z = 1 \), \(x+2y+4z = -1 \), and \(3x-2y-2z = 7 \).

Problem 5. Show that the two planes determined by \(2x + 2y - 3z = 1 \) and \(4x + 4y - 6z = 0 \) do not intersect and are thus parallel.

Problem 6. Let \(P \) be the plane given by \(2x + 3y - 2z = 1 \). Let \(L \) be the line given by \(\langle x, y, z \rangle = \langle 1, 1, 1 \rangle t + \langle 1, 0, 1 \rangle \). Find the point where they meet.

Problem 7. Show that these four points lie in the same plane: \((1, 1, -1)\), \((-1, 0, 0)\), \((-1, 1, -\frac{1}{2})\), and \((1, -1, 0)\). Find an equation for this plane.
3 Parametric Equation for a Plane

There is another form for equations of planes in \mathbb{R}^3 that is the analog of the parametric form for equations of a line. The difference is we will need two parameters, r and s, instead of one. Of course, the time metaphor is no longer useful.

Let P be a plane given by $Ax + By + Cz = D$. Assume that $C \neq 0$. Then we can solve for z and get $z = D/C - A/Cx - B/Cy$. (If $C = 0$ solve for x or y instead.) Think of z as the height above the xy-plane. Now let $x = r$ and $y = s$, and think of r and s as free parameters. We can now write

$$\langle x, y, z \rangle = \langle r, s, D/C - A/Cr - B/Cs \rangle$$

$$= \langle 0, 0, D/C \rangle + r \langle 1, 0, -A/C \rangle + s \langle 0, 1, -B/C \rangle$$

This equation is far from unique. We can start with any point $(x_0, y_0, z_0) \in P$, regard it as a vector $p_0 = \langle x_0, y_0, z_0 \rangle$ and add multiplies of $\langle 1, 0, -A/C \rangle$ and $\langle 0, 1, -B/C \rangle$ to it and stay in the plane. Furthermore, if we let v_1 and v_2 be nonzero multiplies of $\langle 1, 0, -A/C \rangle$ and $\langle 0, 1, -B/C \rangle$, respectively then

$$p = p_0 + rv_1 + sv_2$$

gives the same plane P. Indeed, we could use any pair of vectors in P with tails at p_0 as long as they point in different directions.

We will use this formulation to place a coordinate system on P. Take a point (x_0, y_0, z_0) on P and call it the origin of P. Then any point on P can be gotten to by adding multiplies of v_1 and v_2 to p_0. Thus, for any point on P we can think of it as having coordinates (r, s). See Figure 3.

Example 1. Define a plane P by

$$\langle x, y, z \rangle = \langle 1, 2, 3 \rangle + r \langle 1, 1, 0 \rangle + s \langle 0, 1, 1 \rangle$$

Show that the point $(0,2,4)$ is on P and find its rs-coordinates.

Solution. We have three equations and two unknowns.

$$\begin{align*}
0 &= 1 + 1r + 0s \\
2 &= 2 + 1r + 1s \\
4 &= 3 + 0r + 1s
\end{align*}$$

$$\implies \begin{cases} r = -1 \\ s = 1 \end{cases}$$

Thus, $(0,2,4) \in P$ and it has rs-coordinates $(-1,1)$ relative to the given parametric equation. \qed
Problem 1. Using the same plane P in Example 1, find the rs-coordinates of $(3, 3, 2)$.

Problem 2. Show that the point $(1, 2, -1)$ is not on the plane P of Example 1.

Problem 3 (Hard). The equation $2r + 3s = 1$ determines a line L in the plane P of Example 1, using rs-coordinates. Find a parametric equation for L in xyz-coordinates.

Figure 3: Coordinates for a plane: The dark lines are the r and s-axes