1. Let B and C be 2×2 matrices, and let O be the 2×2 matrix with all 0 entries. Let A be the 4×4 matrix given by

$$A = \begin{bmatrix} B & O \\ O & C \end{bmatrix}.$$

Prove that $\det(A) = \det(B) \det(C)$.

2. Let A be an $n \times n$ matrix. Suppose that A is skew symmetric (this means $A^T = -A$). Prove that if n is odd, then $\det(A) = 0$. Give an example of a 4×4 skew symmetric matrix that has determinant 12.

3. Let A, B and C be a square matrices of the same size. Let $A \sim B$ mean A is similar to B. Prove each of the following statements.

(a) A is similar to itself.
(b) If $A \sim B$ then $B \sim A$.
(c) If $A \sim B$ and $B \sim C$ then $A \sim C$.

(This means that similarity gives an equivalence relation on the set of $n \times n$ matrices for any n.)