Review Sheet for Calculus III

On Friday there will be a quiz covering arithmetic, algebra, geometry, trigonometry and of course basic calculus. The quiz will count as a homework set. I will ask to meet individually with students who score poorly. Below are some practice problems. But these are not the quiz questions. If a problem is difficult for you, it means you need to review that topic area.

NO CALCULATORS

(1) Compute: (a) \(23.56 \times 7.12\). (b) \(\frac{17}{34} - \frac{14}{15}\) (c) \(\log_4 32\) (d) 200% of 87.

(2) Simplify: (a) \(\frac{2x + y}{x - y} + \frac{4x + y}{x + y}\) (b) \(1024x^8w^2v^{1/3} \left(\frac{x^2p^{44}v^{1/3}}{xy^{-38^2pw}}\right)^2\)

(3) A tetrahedron has edge length of 1 meter. Find its volume and surface area. Generalize.

(4) A triangle has edge lengths 3, 7 & 8. Find all the angles in radians.

(5) Compute \(\sec^{-1} \sqrt{2}\) in radians.

(6) Graph: (a) \(y = 3 \cos(2x + \pi)\) (b) \(y = e^{-x^2} \cos(x)\) (c) \(y = (x + 2)(x - 5)|x - 1|\) (d) \(y = \sin(x)/x\) (e) \(y = \sin(1/x)\).

(7) (a) If \(f(x)\) is an odd function and \(g(x)\) is an even function what can you say about \(f(f(g(f(x))))\)? (b) Can you give an example of a function that is both odd and even?

(8) Prove that \((f(x) + g(x))' = f'(x) + g'(x)\), where \(f\) and \(g\) are real valued differentiable functions of a real variable.

(9) Compute: \(\lim_{x \to -2} \frac{x^2 + 5x + 6}{x + 2}\), with and without using L’Hôpital’s Rule.
(10) Compute: \(\lim_{x \to \infty} \frac{x^2 + \sin x}{x^2} \).

(11) Let \(f(x, y) = \sin(yx^2) \frac{yx + \ln x}{yx \tan 3x} \). Assume \(x \) and \(y \) are independent variables. First compute the derivative of \(f \) with respect to \(x \). Then compute the derivative of \(f \) with respect to \(y \).

(12) \(\int_{-15}^{15} \sin x^3 \, dx \)

(13) \(\int x \cos 4x \, dx \)

(14) \(\int \sin 2\alpha \cos 7\alpha \, d\alpha \)

(15) \(\int \arctan 3P \, dP \)

(16) \(\int xe^x + xe^{x^2} \, dx \)

(17) \(\int \frac{x}{\sqrt{9 - x^2}} \, dx \)

(18) Consider the region formed from rotating the portion of the parabola given by \(y = 4 - x^2 \) for \(y \geq 0 \) about the \(y \)-axis. Find its volume and surface area not including the base.

(19) Derive the formula for the volume of a sphere as a function of its radius \(R \). Take its derivative. What does this give you?

(e) Why is \(e \) important? Give the value of \(e \) to five decimal places. Find an infinite series that converges to \(e \).