A continuum is a connected, compact, metric space. A continuum is non-degenerate if it has more than one point. In the plane a closed arc, a circle, and the topologist’s sine curve are examples. A topological space \(X \) is homogeneous if for every \(a, b \in X \), there is a homeomorphism, \(h : X \rightarrow X \) with \(h(a) = b \). From the above examples only the circle is homogeneous.

In 1920 Knaster and Kuratowski [4] asked whether the circle was the only non-degenerate homogeneous continuum in the plane. In 1948 Bing [1] showed that the pseudo-arc was another such space and in 1959 Bing and Jones [2] showed that the circle of pseudo-arcs was a third such space. Any two pseudo-arcs or circles of pseudo-arcs are respectively homeomorphic, just as any two simple closed curves are. The circle, the pseudo-arc and the circle of pseudo-arcs are topologically distinct spaces.

In 2014 Hoehn and Oversteegen [3] showed that up to homeomorphism these are the only three examples, thus giving a complete topological classification of non-degenerate, homogeneous, planar continua.

Here is a construction of the pseudo-arc. All sets are in the plane. A \(\epsilon \)-chain is an ordered finite collection of open sets, \(C = (L_1, L_2, \ldots, L_n) \), such that each link of \(C \) is a subset of some link of \(C' \). We say \(C \) is crooked in \(C' \) if for all indices \(i, j, m \) and \(n \) with \(L_i \cap L'_m \neq \emptyset \), \(L_j \cap L'_n \neq \emptyset \) and \(m < n - 2 \), there exists indices \(k \) and \(l \) such that \(i < k < l < j \) or \(i > k > l > j \), \(L_k \subset L'_{n-1} \), and \(L_l \subset L'_{m+1} \).

A pseudo-arc is then constructed as follows. Let \(p, q \in \mathbb{R}^2 \), \(p \neq q \). For \(i = 1, 2, 3 \ldots \) let \(C^i = (L^i_1, \ldots, L^i_{n_i}) \) be \(\epsilon \)-chains such that

- \(p \in L^i_1 \) and \(q \in L^i_{n_i} \),
- \(\epsilon \)-chain with \(\epsilon = 1/2^i \),
- the closure of each link of \(C^{i+1} \) is a subset of some link of \(C^i \), and
- \(C^{i+1} \) is crooked in \(C^i \).
Let \(P = \bigcap_{i=1}^{\infty} \left(\bigcup_{j=1}^{n_i} L_i^j \right) \). Then \(P \) is a pseudo-arc.

Remark. A similar definition can be given for the **pseudo-circle** (each last link meets the first and \(p = q \)). However, is has been shown that the pseudo-circle is not homogeneous. [5]

Finally we discuss the circle of pseudo-arcs. A space \(X \) is a circle of pseudo-arcs if there exists an open continuous function \(f : X \to S^1 \) such that \(f^{-1}(\theta) \approx P \) for every \(\theta \in S^1 \). Bing and Jones [2] showed these have the required properties and constructed a circle of pseudo-arcs in the plane.

References

 http://projecteuclid.org/euclid.dmj/1077475025
 http://arxiv.org/abs/1409.6324
 http://pldml.icm.edu.pl/pldml/element/bwmeta1.element.bwnjournal-article-fmv1i1p223bwm