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Abstract

We shall prove that a knot which can be represented by a positive
braid with a half twist is prime. This is done by associating to each
such braid a smooth branched 2-manifold with boundary and studying
its intersection with a would-be cutting sphere.
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This paper assumes the reader is familiar with the distinction between
prime and composite knots, the fact that knots can be braided and the
geometric proof that torus knots are prime. These can be found in [2].

A knot is a positive braid if it can be represented as a braid, all of whose
crossing are of the same type. It has been conjectured that positive braids
with a full twist are prime [4, Problem 18.1]. The conjecture was motivated
by the study of Lorenz knots, which arise in many dynamical systems. They
are known to be positive braids with a full twist [1] and Bob Williams had
shown that they are prime [6]. Here we prove a slightly stronger result, that
positive braids with a half twist are prime. After announcing our result we
learned that another researcher had also obtained it as a special case of a
more general theorem using different methods [3]. We hope that our proof
techniques are of interest.

Theorem. Positive braids with a half twist are prime.

Proof. Let k£ be a positive braid with a half twist. We associate to k£ a
branched surface, B = B(k). The surface is a Mébius band M, with half disks
or tabs attached along their diameters. There is one tab for each crossing
of k£ that is not a part of the half twist. The attachings are smooth and all



tabs come into the Md6bius band from the same direction. The smoothness
is needed so that B will have a well defined normal bundle.

We can find in B a knot of knot type k£ using one tab for each crossing
that is not part of the half twist. Figure 1 gives an example. The knot is
a (2,5)-torus knot presented on three strands. The embedding is piecewise
smooth with one cusp point per branch line.
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Figure 1: The knot £ is taken to the branched surface B. One connects the
bottom and top of the figures to form a closed braid and the corresponding
branched surface.

Now suppose that &k is a composite knot. Then there is a 2-sphere S that
factors k. We can take S to be transverse to B. Further, we can require
them to be perpendicular. Let I = BN S. Let [ be the union of the branch
lines of B. Let 6 = 0B U 3. Divide I into segments whose end points are
Ind. We also divide § in segments using the end points of 3.

We assume that the number of segments in I is minimal. This will allow
us to construct an algorithm which traces out a path in I with infinitely many
segments, contradicting transversality. Hence, the theorem will be proved.



Minimality tells us that there are no trivial loops which miss 3 or arcs
that connect a segment of 0B to itself in I. (We regard the trivial loops as
segments.) Also, segments of I that connect one segment of M to another
(without meeting ) would be pierced by the knot more than once from the
same side (here we think of £ as being oriented). Next we list the remaining
types of segments that could be in /.

e Same branch segments:

— U-joints connect two points on the same branch line from below.

— M-joints connect two points on the same branch line from above.
e Branch to edge segments:

— |-joints connect a branch point to a point on M below and to
the right.

— |-joints connect a branch point to a point on OM below and to
the left.

— [-joints connect a branch point to a point on M above and to
the right.

— |-joints connect a branch point to a point on M above and to
the left.

— |-joints connect a branch point to a point on 0B — 0M.

e Branch to branch segments connect one branch line to other (only one
type).

Note: the notions of right & left and above & below are well defined in a
neighborhood of any branch line. Each branch line can be oriented and the
orientations made consistent by using the using the crossing of k. We take
the tangents going towards the branche lines to be pointing downward.

Lemma 1. If p € I N 3 then either p is the lower end point of a branch
to branch segment or it is the right end point of a N-joint.

We shall defer the proof of lemma 1 until later.



The algorithm: Pick a point p in I N 3. Such a point exists since
segments that miss # where ruled out. Choose one of the two segments
meeting p from above according to the following rules: If possible choose a
branch to branch segment and repeat the algorithm from its other end point.
If not, then at least one of the two segments is a N-joint whose other end
point is to our left. Choose it and repeat from this point.

Lemma 1 guarantees that the algorithm is valid and gives a path P which
misses 0B. It only remains to show that P has no loops, for this will imply
that P has infinitely many segments. This is done in lemma 2.

Lemma 2. There are no loops in P.

Proof. Consider a unit normal bundle to P. Think of it as a ribbon
glued down along P. If P has a loop L, we get a closed ribbon R. Since the
sphere is normal to B, we can place R in the sphere. Hence R is untwisted.
If L contains no N-joints then the twist of R is given by

3
Twist(R) = e 1,

where 7 is the number of times L goes around on M. But this is never zero,
so L has one or more N-joints. We study how the N-joints contribute to
Twist(R).

When we travel along a N-joint we are going from right to left. When
we get to the other end point and proceed upwards from there, a half twist
is created. When we go from front to back we get a +%, which only makes
matters worse. If we go from back to front we do get a —%, but in order to
form a loop we must get back onto M. Thus we encounter a back to front
N-joint and contribute nothing to the twist. See figure 2. If we let f be the

number of front N-joints and b be the number of back N-joints, then

Twist(R) = gn -1+ %(f —b).

But, f > b = Twist(R) > 0. Hence there are no loops in P and the proofs
of lemma 2 and the theorem are complete. O

Note: Our twist formula is taken from Lemma 5.6 of [6] and is only
valid when all the crossings of L are positive, which they are, and when L
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is unknotted, which it must be. See section 3 of [5] for a discussion of these

points.
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Figure 2: We have actually drawn tangent bundles, which have the same
twist as the normal bundles but are easier to visualize.

Proof of lemma 1. Consider a N-joint. Label its left and right end
points p and ¢ respectively. We may take it to be inner most. This implies
that I does not meet the arc in # bounded by p and ¢. Call this arc pgq.

If £ does not meet pg then we can deform S so as to push the N-joint
through the branch line and reduce the number of segments without gaining
or losing intersection points between the knot and the sphere. That is we
have a new transverse cutting sphere with fewer segments in I. See figure 3.

However, we can say more. If the only points in £ N pg come from arcs
of the knot which hit the N-joint, then we can do the same move as before;
the single intersection point is dragged along with the deformation of S. The
same is true if the only point in £ N pg is a cusp point. See figure 4. We
summarize this discussion by saying: A N-joint must be guarded by an arc of
k from the opposite branch.

We will now show that there are no |-joints in /. Suppose that there is
one and let its end point on 3 be p and the left end point of this component
of 3 be e. Call the open arc from e to p, ep. We assume the |-joint to be left
most. If I meets ep there would have to be a MN-joint on the Mobius band
which cannot be guarded. This is because, the only way to guard the N-joint
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Figure 3: a) Removing an unguarded front N-joint. b) Removing an un-
guarded back N-joint. ¢) Guarded N-joints. (Next page.)
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Figure 3: Continued from previous page

Figure 4: Removing unguarded N-joints which meet the knot &

would force k to cross the |-joint twice from the same side. But then & would
pierce S twice from the same side. See figure 5.

Now, since k can meet our |-joint at most once, we only have three cases:
k misses the joint and hence misses €p, kK meets €p at a cusp point, or £ meets
ep transversely. In each case, we can deform S so as to reduce the number
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Figure 5: Double piercing of S from same side

of segments in /. See figure 6. We might say that it is impossible to guard a
|-joint. While we cannot rule out [-joints, it should be clear that they must
be guarded by an arc of £ on the corresponding tab.

Now, to prove the lemma, let p € I N (3, and assume the lemma is false.
Then one of the three cases below must occur, yet each leads to a contradic-
tion.

CASE 1: Suppose p is the common left end point of two N-joints. We
assume the structure is inner most. Then I must miss the interior of the arc
of the branch line connecting the end points of the shorter N-joint.

If the right end points are equal, it is impossible to guard both N-joints
without puncturing the sphere twice from the same side.

Suppose the that the front N-joint’s right end point falls short of the back
MN-joint’s. In order to guard the front N-joint a single arc of k£ must pass under
it and hence pierce the other N-joint. We see in figure 7a that we can still
deform S so as to reduce the number of segments even though the N-joint
was guarded. The joint wasn’t guarded well enough.

If the back N-joint is the shorter than we must have the over-crossing arc
of £ to guard it, but again we just can’t guard it well enough. This is shown
in figure 7b.



Figure 6: Removing edge-joints

CASE 2: Suppose a [-joint meets the left end point of a N-joint at p.
Then the only way to guard the N-joint forces k to pierce the [-joint. Figure
8 shows how to deform S.

CASE 3: Suppose a |-joint and a [-joint meet at p. We assume this is the
right most such case. If I meets the open interval in § from p to the right
end point, then one of the combinations of cases 1 or 2 must occur. Thus,
misses this interval.

Now the only way to guard the [-joint is by the arc of k that comes up
from the cusp point onto the tab. However, the cusp point is to the right of
p, since otherwise the [-joint is pierced twice by k from the same side. Just
draw the picture. But now k pierces the |-joint. The reader can check that
as before, the [-joint isn’t guarded well enough. See figure 9. O



Figure 7: Removing N-joints that double back
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