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Abstract. We study simple Smale flows on S3 and other 3-manifolds
modeled by the Lorenz template and another template with four
bands but that still has cross section a full 2-shift.

1. Introduction

We study simple Smale flows (defined below) on 3-manifolds. This
continues work done in [7], [18] and [1]. We enumerate the 3-manifolds
that can support Lorenz-Smale flows extending [1]. We also study
embedding types of non-Lorenz-like simple Smale flow in S3 whose
saddle set is modeled by a template with three bands. Most of this
work appeared in [12].

2. Background

Background material on Smale flows can be found in [18, 1] and the
references therein. We study smooth R actions on three-dimensional
compact manifolds without rest points, i.e., nonsingular flows. A non-
singular Smale flow (NSF) is a flow that is structurally stable and
whose invariant set is one-dimensional. The invariant set of a Smale
flow can be decomposed into a finite number of basic sets which are
disjoint, compact and transitive (they have a dense orbit). Each basic
set is either an attractor, repeller or saddle set. Since the manifold is
three-dimensional, each attracting and repelling basic set consists of a
single closed orbit. Saddle sets may consist of a single closed orbit or
be suspensions of nontrivial irreducible shifts of finite type; such saddle
sets are said to be chaotic and contain infinitely many closed orbits.
(For the definition of shifts of finite type see [13] or [5].)

A chaotic saddle S of a Smale flow and its dynamics can be modeled
by a template [9, 2, 3], which is a branched two-manifold with a semi-
flow. A template T for a chaotic saddle set S can be constructed by
taking an isolating neighborhood N of S and then identifying points
along local stable manifolds. Many orbits of the flow are identified but
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no two periodic orbits are identified. Thus for any finite link of closed
orbits in S there is a corresponding link of the same link-type of closed
orbits of the induced semi-flow on T .

Templates, originally called knot holders, were first used to study
the topology and dynamics of the basic sets. However, they can also
be used to help understand the global structure of flows. A thickened
version of a template model corresponds to an isolating neighborhood
of the saddle set. Its boundary is naturally partitioned into an exit set,
entrance set and tangent set, where the first two are subsurfaces whose
closures intersect to form the one-dimensional tangent set. Thickened
templates along with tubular neighborhoods of the attractors and re-
pellers are glued together in a manner compatible with the flow recon-
structing the supporting three-manifold. Given a template or templates
and some closed orbits marked as attractors, repellers or saddles one
can ask what manifolds can support NSFs with corresponding basic
sets.

We will restrict our attention to NSFs with three basic sets, an at-
tractor, a repeller and a chaotic saddle set. These are called simple
Smale flows. If the saddle set can be modeled by a template with just
two branches the flow is a Lorenz-like Smale flow. Topologically there
are three types of Lorenz-like templates denoted L(0, 0), L(1, 0) and
L(1, 1) for where both bands are orientable, only one is and neither is
respectively; see Figure 1. For an embedded Lorenz-like template we
use a pair of integers to denote the number of half twists in each band.

L(0, 0) L(0, 1) L(1, 1)

Figure 1. Lorenz like templates

We next review some topics from 3-manifold theory. Let I = [0, 1].
An i-handle is a 3-ball represented by I3 together with a specified subset
of its boundary that is called its attaching set. For i = 0 the attaching
set is empty. For i = 1 it is {0, 1} × I2, that is the top and bottom
faces. For i = 2 it is (∂I2) × I, that is the four side faces. Finally for
i = 3 the attaching set is the entire boundary 2-sphere of I3. Given a
3-manifold M one can form a new 3-manifold by attaching an i-handle
H to M by gluing the attaching set of H to a portion of the boundary
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of M for i > 0; for i = 0 attaching is just a disjoint union and M = φ
is allowed. A handle body is a 3-manifold formed by attaching finitely
many 1-handles to an initial 0-handle.

If we glue two solid tori together along their boundaries we may
form a variety of spaces depending on the isotopy class of the gluing
homeomorphism. These include S3, S2 × S1 and the lens spaces. If
a meridian of one solid torus in taken to a nontrivial (p, q) curve on
the boundary of the other the resulting space is the (p, q) lens space,
denoted l(p, q).

This construction can be viewed as a special case of Dehn surgery
[15]. Given a 3-manifold M and a knot K one deletes the interior
of tubular neighborhood N(K) of K. This knot complement space
is denoted MK . Then one glues in a new solid torus V via a home-
omorphism h : ∂N(K)(⊂ MK) → ∂V . The gluing homeomorphism
is characterized up to isotopy by a (p, q) curve on N(K) that will be
identified with a meridian of V . We will call (p, q) the gluing coordi-
nates. We note that these are relative to the choice of the longitude for
N(K). The standard practice is to chose a preferred longitude meaning
one that has linking number zero with K. It is easy to show that the
order of the first homology group of any (p, q) Dehn surgery on a knot
in S3 is isomorphic to Z/qZ.

Finally we review Seifert fibered manifolds [20, 4, 11]. Let D be the
unit disk. Let C = D × I and construct a solid torus by attaching
D × 0 to D × 1 via 2vπ/u rotation for integers v and u 6= 0.

This solid torus is naturally fibered by circles which are formed from
finitely many copies of I. The center fiber is one copy of I with its ends
attached and the others a formed from u copies of I laid end to end.
A solid torus together with such a fibration is called a (u, v)-Seifert
fibered solid torus. If |u| > 1 the center fiber said to be exceptional of
index |u|.

A Seifert fibered manifold is a manifold that can be decomposed
into a disjoint union of circles, called the fibers, such that each fiber
has a tubular neighborhood that is a Seifert fibered solid torus. If a
Seifert fibered manifold is compact the number of exceptional fibers
is finite. Compact Seifert fibered manifolds have been classified up to
fiber preserving homeomorphism by Seifert [20].

If one quotients out the fibers the result is a surface called the orbit
surface. For this paper we only need Seifert spaces where the orbit
surface is S2 so we will restrict our discussion to this case; it follows
that the 3-manifold must be orientable. The 3-sphere, S2 × S1, and
the lens spaces are all examples, but there are many others. Each of
these can be fibered in infinity many different ways, however for “most”
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Seifert fibered manifolds the topological type of the manifold admits
only one type of fibration.

The gist of Seifert’s classification is that any compact Seifert fibered
manifold (with S2 orbit surface) and n exceptional fibers can be con-
structed by the following steps. Remove the interiors of n+ 1 disjoint
closed disks from S2; call the result Sn+1. Let M0 = Sn+1×S

1 and fiber
it using ∗ × S1 for fibers. Then attach n + 1 solid tori to n of the tori
boundary components with gluing coordinates (βi, αi), for i = 0, . . . , n
with β0 = 1 and all other βi > 1 and all pairs relatively prime. We
often express this as a gluing slope αi/βi.

But gluing coordinates are relative to the coordinates used on the
tori. For meridians use a fiber ∗ × S1. For longitudes we select a cross
section of M0 and take its intersection with the boundary components.
Obviously Sn+1 × θ for any θ ∈ S1 would do, but there are many other
choices of the cross section that give non-equivalent longitudes. One
can then fiber the attached solid tori in such a way that the gluing
maps are fiber preserving.

We will use the following notation for oriented Seifert fibered spaces
over S2 with n exceptional fibers: S2(α0,

α1

β1

, . . . , αn

βn

). The ambiguity in

the choice of the cross section causes the following equivalences: we can
add an integer to any of the ratios provided we subtract it from another.
This allows us to present a Seifert fibered manifold in a normal form
where 0 < αi < βi for i = 1, . . . , n. If α0 = 0 it is often dropped. The
sum Σn

i=0αi/βi, called the Euler number of the manifold, is an invariant
under fiber preserving homeomorphisms. If we change the orientation
on the manifold we get S2(−α0,−

α1

β1

, . . . ,−αn

βn

). For n = 3 order of the

first homology group is

±(α0β1β2β3 + α1β2β3 + β1α2β3 + β1β2α3).

We can arrange for the sign to be + by our choice of orientation. (Note:
we switched the roles of α and β used in [14] to be consistent with [11].)

3. Manifolds realizing Lorenz-like Smale Flows

Theorem 3.1. [Haynes & Yu]

a. The closed manifolds that admit an L(0, 0) Lorenz like Smale
flow are the following and only the following: S3, S2 × S1, any
lens space, the sum l(3, 1)#RP 3, the Seifert fibered manifolds of
type S2(1

2
, 1

3
, q1
p1

) and S2(1

2
, 1

3
, q1
p1
, q2
p2

) where pi 6= 0 and (pi, qi) = 1

for i = 1, 2.
b. The closed manifolds that admit an L(1, 0) Lorenz like Smale

flow are just the same as in (a).
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c. The closed manifolds that admit an L(1, 1) Lorenz like Smale
flow are the following and only the following: S3, l(3, 1), l(3, 1)#Y
where Y is S2 × S1 or any lens space, and the Seifert fibered
manifolds of type S2(1

2
, 1

3
, q1
p1
, q2
p2

) where pi 6= 0 and (pi, qi) = 1

for i = 1, 2.

Parts (b) and (c) were proven in [1]. We outline the proof given in
[12] of (a) for completeness of the theory. It is similar to Bin Yu’s proof
of (b) which came first.

Proof of a. Let T be a tubular neighborhood of L(0, 0), that is T is a
thickened up version of L(0, 0). It is to have a smooth flow which is the
inverse limit of the semi-flow on L(0, 0). Then ∂T has an exit set and an
entrance set. Denote their closures by Ex and En respectively. Then
Ex ∩ En is a set of circles where the flow on the completed manifold
will be tangent to ∂T .

Let A be a tubular neighborhood of the attracting orbit a and let
R be a tubular neighborhood of the repeller r, each with the obvious
vector field. We assume A, T and R are disjoint and then glue them
together with diffeomorphisms that match the vector fields to create
M . Thus we can write

M ∼= (A ∪φ T ) ∪ψ R,

where φ and ψ are attaching maps; φ : Ex → φ(Ex) ⊂ ∂A and
ψ : ∂R → ∂(A ∪ T ).

Partition Ex into three pieces, two annuli, C1 and C2, and a rectangle
L. Let c1, c2 and l be the cores of these respectively as shown in Figures
2 and 3.

Let AT = A ∪φ T . Up to diffeomorphisms AT is determined by the
images of c1 and c2. Let c′i = φ(ci) for i = 1, 2. We divide the proof
into three cases. In each the roles of a and r can be reversed.

Case 1. Suppose c′1 and c′2 are inessential in ∂A. We claim AT is a
solid torus. Either c′1 and c′2 are concentric on ∂A or not. First suppose
they are not. Let Di be the disk in ∂A with boundary c′i, i = 1, 2. Let
Bi = Di× [0, ǫ] be disjoints balls in A such that A′ = cl (A−B1 −B2)
is still a solid torus. We can regard Bi as a 2-handle and attach it to
Ci, i = 1, 2. Then T ′ = T ∪B1∪B2 is a 3-ball. Now D1×{ǫ}, D2×{ǫ},
and L form a disk in ∂T ′. Then AT = A′∪T ′ where the gluing is along
this disk. Hence AT is a solid torus as claimed.

Next suppose c′1 and c′2 are concentric and that c′1 ⊂ D2. We attach
B1 to T as before. Clearly B1 ∪T is a solid torus and c2 is a longitude.
Then let B′

2 = D2 × [0, 2ǫ] − int (B1); it is a ball. We treat it as a
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Figure 2. The entrance and exit sets of a thick Lorenz template

C1 C2
L

c1 c2
l

Figure 3. Core of the exit set

2-handle and attach it to B1 ∪ T along C2 and see that T ∪B1 ∪B
′

2 is
a ball. As before see have that AT is a solid torus.

Thus, M = AT ∪ R can be S3, S2 × S1 or any lens space.
Case 2. Suppose c′1 is inessential and c′2 is essential in ∂A. Then

we can define B1 as before, A− int(B1) and T ∪B1 are solid tori with
c2 a longitude on the latter. It is not hard to show that gluing two
solid tori together along longitudinal annuli in their boundaries yields
another solid torus. Thus for AT ∪ R we get the same list as in Case
1.

Case 3. Suppose c′1 and c′2 are essential in ∂A. In S3 one can use
the Seifert–van Kampen theorem and some basic 3-manifold theory to
show that T ∪ R must be a trefoil complement with a a trefoil knot,
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[18, 1]. Thus Dehn surgery on r can be preformed to yield S2 × S1

or any lens space. But we can also perform Dehn surgery on a. The
resulting spaces have been classified by a theorem of Louis Moser’s
[14, 19]. Let σ = 6p+ q. There are three cases to consider.

If |σ| > 1 then we get S2(α0,
1

2
, α2

3
, α3

σ
). The values of the αi are

determined the equation derived by the two computations of the order
of the first homology group:

6σα0 + 3σ + 2σα2 + 6α3 = |q|.

Given any choice for the αi we can solve for p and q. It is also possible
to rewrite the manifold in the form S2(1

2
, 1

3
, α
β
).

Example 1. For (p, q) = (7,−3) we have σ = 39. We then find the
manifold is S2(−1, 1

2
, 1

3
, 7

39
). For (p, q) = (5, 2) we get S2(−2, 1

2
, 2

3
, 9

32
).

For |σ| = 1 the result is a the lens space l(|q|, 9p). For the last case
σ = 0 the result is l(3, 2)#l(2, 3), which is known to be homeomorphic
to l(3, 1)#RP 3.

We can also do Dehn surgery on both a and r. If |σ| > 1 then r
being a meridian causes it to be a regular fiber after doing the surgery
on a. So when we doing the surgery on a tubular neighborhood of r
we get S2(α0,

1

2
, α2

3
, α3

β3

, α4

β4

).

If |σ| = 1 then r is a regular (non-exceptional) fiber in the fibration
of l(|q|, 9p) and the result is just another lens space (see [16, Section
1.6]). If σ = 0 then a and r are parallel after the surgery on a. Thus
doing the r surgery just sends us to a space of the form S2(α0,

1

2
, α2

3
, α3

β3

).
�

4. Realizing U in S3

Let U be the template shown in Figure 4 on the left. Using this
figure as a specific embedding of U into S3 it was been shown by Rob
Ghrist that U contains every finite link as set of periodic orbits [8, 9].
Thus, the constructions in Theorem 4.1 give examples of nonsingular
structurally stable flows in which every finite link is realized as a set
of periodic orbits. Let U+ be the same as U but with the crossing on
the top and bottom branch lines having the same sign as shown on the
right side of Figure 4.1. It is known that all knots on U+ are prime
[17]. In both cases there is a Markov partition whose first return map
is topologically conjugate to the full 2-shift.

Theorem 4.1. For a simple Smale flow on S3 with saddle set modeled
by U the link a∪r is either a Hopf link or a figure-8 knot and meridian.
In the latter case the bands are untwisted, unknotted, and unlinked. In



8 ELIZABETH L. HAYNES AND MICHAEL C. SULLIVAN

U U+

Figure 4. Templates U and U+

Figure 5. Thickened template U and its exit set

the Hopf link case one or two bands may form (p, q) torus knots about
a or r; however the two looped bands on the left of Figure 4 cannot both
be knotted, twisted, linked.

Proof. A thickened version of U is a genus 3 handlebody which we will
still call U . The exit Ex can be partitioned into three annuli and two
rectangular strips: C1, C2, C3, L1 and L2 respectively. We partition
the core of the exit into three loops and two line segments, c1, c2, c3, l1
and l2. Let h : Ex→ ∂A be the attaching map. The topology of A∪R
is determined by the image of the core. Let c′i = h(ci) and l′j = h(lj)
for i = 1, 2, 3 and j = 1, 2. See Figures 6.

We divide the problem into cases based on how many of the c′i’s are
essential in ∂A. Note that in the subcases we can always switch c′1 and
c′3 since U has the following symmetry: rotation about the axis marked
by a dot in Figure 5 so as to switch the upper and lower “ears” then
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c1 c2

c3

l1

l2

Figure 6. The core of U ’s exit set.

take a mirror image. Also notice that in any allowed configuration l′1
and l′2 must attach to opposite sides of c′2; for example “O-O-O” is not
allowed. We shall assume if c′2 bounds a disk that c′3 is inside that disk
and c′1 is not.

Case O. All three are inessential. We construct A ∪ U in stages.
There two subcases as shown in Figure 7: either c′2 is inside the disk
bounded by c′1 or it is not. Either way c′3 bounds a disk in ∂A. Thicken
it slightly to create a thin ball B3 in A. Let A′ = cl (A − B3); it is a
solid torus. Let U ′ = U ∪B3 where the attaching is as a 2-handle with
attaching set the inner half of C ′

3. Now U ′′ is a genus two handlebody.
Next, notice that c′2 bounds a disk in ∂A′ (l′2 is in this disk). We repeat
the procedure: A′′ = cl (A′ − B2) is a solid torus and U ′′ = U ′ ∪ B2

is a solid torus too. Note that the gluing is still as a 2-handle with
attaching set now formed by the inner half of C ′

2, L
′

2, and B2 ∪B3.
Subcase a. If the disk in ∂A′′ bounded by c′1 is disjoint from B2

then we can create a thin 3-ball B3 by pushing into A a little. Then
define A′′′ = cl (A′′ − B3), which is a solid torus, and U ′′′ = U ′′ ∪ B3,
which is a 3-ball. We can now form A ∪ U by gluing A′′′ to U ′′′ by
identifying a disk in ∂U ′′′ consisting of B1 ∩ ∂U

′′′, L1, and B2 ∩ ∂U
′′′

with the corresponding disk in ∂A′′′. Thus we see that U ∪A is a solid
torus and a can be taken as its core. Therefore, if this subcase can be
realized it must be that a∪ r is a Hopf link. We will see later that this
configuration and the others below can be realized.

Subcase b. If the disk in ∂A bounded by c′1 contains c′2 then we
can still carve out a 3-ball B1 from A′′ by digging in a little deeper. In
this case L1 is in the boundary of B1. We let A′′′ = cl (A′′ − B1) and
U ′′′ = U ′′ ∪ B1 where B1 is a 2-handle. Again A′′′ is a solid torus and
U ′′′ is a 3-ball. We form U ∪A by gluing A′′′ to U ′′′ by identifying the
disk in ∂U ′′′ consisting of ∂B1 ∩ ∂U ′′′ with the corresponding disk in
∂A′′′. Thus we see that U ∪A is a solid torus and that a can be taken
as its core. Therefore, if this subcase can be realized it must be that
a ∪ r is a Hopf link.
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B1 B2

B3

U

U

A

A

U ′′′

U ′′′

A′′′

A′′′

Case Oa

Case Oa

Case Ob

Case Ob

Figure 7. Case O

Case I. Now we suppose only one of the c′i’s is essential. It could
be any (p, q) curve on ∂A. There are two subcases, both illustrated in
Figure 8.

Subcase a. First suppose c′1 is essential with the others being
inessential. We can define thin 3-balls B3 and B2 as before. Let
A′′ = cl (A − B1 − B2) and U ′′ = U ∪ B1 ∪ B2. Both A′′ and U ′′

are solid tori. Now we form U ∪A by gluing U ′′ and A′′ by identifying
the annulus in ∂U ′′ formed C1, L1 and B2∩∂U

′′ with the corresponding
annulus in A′′. While the latter can be any (p, q) curve the former is a
longitudinal annulus. Thus the union is a new solid torus and that a
can be taken as its core. This forces a ∪ r to be a Hopf link.

Subcase b. Now suppose c′2 is essential and the others are not. Now
c′1 and c′3 bound disk is ∂A. Thicken these to get thin 3-balls B1 and
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B3 in A. Let A′′ = cl A−B1 −B3 and U ′′ = U ∪B1 ∪B3. Again both
are solid tori. Now c2 is a longitude on U ′′ so the gluing of A′′ and
U ′′ is a solid torus equal to U ∪A and that a can be taken as its core.
Again we conclude that a ∪ r is a Hopf link.

B1B2 B3 B3

Case Ia

Case Ia

Case Ib

Case IbA

A A

Figure 8. Case I

Case II. Now we suppose only two of the c′i’s are essential. If c′1 and
c′3 were essential then l1 and l2 would attach to the same side of c′2 as
it bounds a disk on the other side. Thus we can exclude this subcase.
We assume that c′2 and only one of c′1, c

′

3, are essential. Without
lose of generality assume it is c′1 that is essential. The two essential
curves must be parallel (p, q) curves on ∂A. Since l′2 must attach to the
opposite side of c′2 from l′1 there is only one configuration to consider;
it is shown in Figure 9.

As before c′3 is the boundary of a disk in ∂A which we can push in
a little to create thin 3-ball in A such that A′ = cl (A − B3) is still a
solid torus. Then we let U ′ = U ∪B3 attached along the original disk.
Then U ′ is a genus two handle body.

Next we consider the open disk in ∂A′ bounded by c′1, c
′

2 and on
two sides by l′1. We can shrink the disk a little bit away from l′1 so its
closure is still a disk. From the closure of this disk push into A′ a little
to create a thin 3-ball Bx in A′ such that A′′ = cl (A′ − Bx) is still a
solid torus. Now attach Bx to U ′ as a 2-handle to get U ′′ which is a
solid torus. Then U ′′ ∪ A′′ is formed by gluing along a (p, q) annulus
in ∂A′′ that consists of C ′

1, C
′

2, L
′

1, ∂A
′′ ∩ Bx, L

′

2 and ∂A′ ∩ B3 to a
corresponding annulus in ∂U ′′. This annulus in ∂A′′ is homotopic to
a c′1. Therefore the corresponding annulus in U ′′ is homotopic to c1, a
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longitude. Hence the union U ′′ ∪ A′′ = U ∪A is a solid torus and that
a can be taken as its core. We conclude that again a∪ r is a Hopf link.

Case II

Case III

B3

Bx

Figure 9. Cases II & III

Case III. Suppose all three are essential. They must be parallel
(p, q) curves on ∂A. We will use the Seifert van Kampen theorem to
find π1(U ∪ A). Using the generators shown in Figure 10 we get
〈

a, x, y, z | ap = xz−1xzx−1, ap = xyx−1, ap = z
〉

∼=
〈

a, x | a−pxa−pxapx−1
〉

.

Using Fox’s free differential calculus [6] we find that the Alexander
polynomial is 2t−1−tp−1. But this cannot be the Alexander polynomial
of a knot unless p = 0.

For p = 0 this group is infinite cyclic. Thus U ∪ A is a solid torus.
Thus r is unknotted.

x y

z

α

β

γ

Figure 10. Generators for U and Ex
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Realizations. All cases above can be realized. To show this we
attach a big ball, B, to U along the exit set as shown in Figure 11. In
Figure 12 we show just B (in green) with the exit set of ∂U in thick red.
The complement of the exit set in ∂B can be divided into four disjoint
open disks which we denote α, β, γ and δ. We also show in Figure 12
several one-handles (blue) and how they could be attached to ∂B−Ex
to form a solid torus which will serve as the tubular neighborhood of
the attractor. We use the following notation for the result of attaching
a one-handle. If both feet land in α we call this αα. If one foot lands in
α and the other in β we call this αβ, and so on. Of course αβ = βα and
all the symbols commute. Also by symmetry we can see that αβ = δγ,
etc. Table 1 lists all the non-redundant pairs and which of the Cases
each gives us.

Now Figure 12 is abstracted from S3. Going back to Figure 11 we
see that, except in Case III, adding the one-handle, H , can be done so
as to make B ∪ U ∪H an unknotted tube. Thus we can glue in R to
make S3. For Case III A ∪ U is a solid torus with a inside as figure-8
knot as shown in Figure 13. Gluing in R we form S3. Then U ∪ R is
the complement of a figure-8 knot; since the complement determines
the knot [10] we see that a can only be the figure-8 knot.

αα → Case Ob

αβ → Case Ia

αγ → Case II

αδ → Case III

ββ → Case Oa

βγ → Case Ib

Table 1

�

Remark 1. Clearly the template U can be realized on any 3-manifold
produced by surgery on r or a. This would include all lens spaces but
there is as yet no succinct way to list all the 3-manifolds produced by
surgery on the figure-8 knot.

Theorem 4.2. For a simple Smale flow on S3 with saddle set modeled
by U+. Then the link a∪r is either a Hopf link or a trefoil and meridian.
In the latter case the bands are untwisted, unknotted, and unlinked. In
the Hopf link case one or two bands may form (p, q) torus knots about
a or r; however the two looped bands on the left of Figure 4 cannot both
be knotted, twisted, linked.
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Figure 11. B ∪ U

α

β

γ

δ

αα

αβ

αγ
αδ

ββ

βγ

Figure 12. Ball, exit set and various 1-handles

Sketch of the proof. The proof breaks down into the same cases as the
proof of Theorem 4.1. The arguments are the same in each case except
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a

U ∪ A

Figure 13. Left: U ∪ A with a inside. Right: U ∪A ∪ R

Case III where the differences are minor. We leave the details to the
reader. �

Corollary 4.3. The set of manifolds which can support a simple Smale
flow with saddle set modeled by U+ is the same as in Theorem 3.1.a.

Acknowledgment. The authors wish to thank the reference for
helpful comments.
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