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1. Introduction

Let G denote a "nite group. In this paper, by a G shift of "nite type (G-SFT) we
will mean a shift of "nite type (SFT) together with a continuous G-action which
commutes with the shift, where in addition the action is free and the SFT is
irreducible and is non-trivial (contains more than one orbit). We will classify these
systems up to G-5ow equivalence. This equivalence relation can be described in
terms of G-SFTs, skew products or suspension 5ows (x 2). For example, two
G-SFTs are G-5ow equivalent if and only if there exists an orientation-preserving
homeomorphism between their mapping tori which commutes with the induced
G actions.

A G-SFT can be presented by a "nite square matrix A over ZþG, the positive
cone of the integral group ring ZG (W. Parry, personal communication 2001). Let
ðI �AÞ1 denote the N � N matrix whose upper left corner is I � A and which
otherwise equals the in"nite identity matrix. Let EðZGÞ be the group of N � N

matrices generated by basic elementary matrices (those which di;er from I in at
most one entry, which must be o;-diagonal) over ZG. Let W ðAÞ denote the
weight class of A (De"nition 4.1): the conjugacy class in G of the group of weights
of loops based at a "xed vertex. We show that the weight class is an invariant of
G-5ow equivalence. When W ðAÞ ¼ W ðBÞ ¼ G, we will show that G-SFTs
presented by matrices A and B are G-5ow equivalent if and only if there are
matrices U and V in EðZGÞ such that UðI � AÞ1V ¼ ðI � BÞ1 (Theorem 6.1).
The complete classi"cation up to G-5ow equivalence, which allows the possibility
W ðAÞ(G, has a more complicated statement (Theorem 6.4).

In the case that G is trivial, our classi"cation reduces to the familiar
classi"cation of Franks [14] by cokernel group and determinant. When G is
non-trivial, the classi"cation up to EðZGÞ is much more diBcult and interesting,
and remains an open problem. We consider these algebraic issues in xx 8 and 9. In
x 8, we give the modest requisite K-theory terminology and background, and for
the case G ¼ Z=2 we give a constructive partial result (Theorem 8.1) and some
very concrete illustrative examples (Examples 8.6 and 8.7) which indicate how the
ZG-equivalence problem becomes more diBcult when G is non-trivial (that is,
ZG 6¼ Z). In x 9, we consider EðZGÞ-equivalence of injective matrices. In this
case, GLðZGÞ-equivalence amounts to isomorphism of cokernel modules, and the
re"nement to EðZGÞ-equivalence is classi"ed by K1ðZGÞ=H for an associated
subgroup H of SK1ðZGÞ. As one consequence, if G is abelian and detðI � AÞ is not
a zero divisor in ZG, then detðI �AÞ determines the G-5ow equivalence class up
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to "nitely many possibilities (Theorem 6.5). Some of the algebra here works more
generally and in particular has a consequence for invariants of SFTs with Markov
measures (Remark 9.10 and Proposition 9.11).

Algebraic invariants over Z for isomorphism and 5ow equivalence of SFTs are
paralleled by the algebraic invariants over ZG for G-equivariant isomorphism and
5ow equivalence of G-SFTs. The "rst key step, classi"cation of G-SFTs by strong
shift equivalence over ZþG of de"ning matrices, is due to Parry (Proposition
2.7.1). We use a systematic conversion [9, Theorem 7.2] from the realm of strong
shift equivalence to the realm of ‘positive K-theory’ to establish necessary matrix
conditions for G-5ow equivalence. We generalize existing positive K-theory
constructions [7] to establish suBcient conditions in the case W ðAÞ ¼ W ðBÞ ¼ G.
To understand the reduction to this case, we draw on ideas of Holt, Parry and
Schmidt [28, 29, 33].

Among motivations for studying G-SFTs, we mention three. First, there are
two systematic frameworks for classifying systems related to SFTs: the ideas
around strong shift equivalence growing out of Williams’ paper [39], and the ideas
of positive K-theory growing out of the Kim--Roush--Wagoner papers [21]. (See
[5, 6, 9].) The G-FE classi"cation "lls in another piece of both frameworks.
Second, in the study of ‘symmetric chaos’ [11], G-SFTs arise as important tools for
the study of equivariant basic sets [10, 12], and can equal such sets. (We
emphasize that we are not addressing the important but quite di;erent case of
non-free actions.) Finally (and in fact our initial motivation), we are interested in
twistwise �ow equivalence, which arose [34, 35, 36] in the study of basic sets of
Smale 5ows on 3-manifolds. Twistwise 5ow equivalence amounts to equivariant
5ow equivalence of G-SFTs with G ¼ Z=2, so our results include a classi"cation
up to twistwise 5ow equivalence, along with constructive techniques resolving
some open questions (x 7).

Acknowledgements. We thank Bob Guralnick, Bob Fitzgerald, Bill Parry
(especially, see Proposition 2.7.1 and Remark 9.10), Jonathan Rosenberg
(especially, see Remark 9.7) and Klaus Schmidt for extremely helpful discussions.
We are also grateful to the anonymous referee for many detailed comments which
improved the exposition.

2. G-�ow equivalence and SFTs

In this section we give background for 5ow equivalence, G-5ows and G-SFTs.

2.1. Notational conventions

Except in part of x 9, G denotes a "nite group. All our G-actions are assumed to
be continuous (each g acts by a homeomorphism), from the right (ðx; gÞ 7! xg),
and free (if g "xes any x then g is the identity in G). We use the following
additional notation.

Let x ¼
P

g2G ngg be an element of ZG. We de"ne �hðxÞ ¼ xh ¼ nh for each
h 2 G. If xg > 0, we say that g is a summand of x.

For a and b in ZG we say that a
 b if �gðaÞ > �gðbÞ for each g 2 G, and a > b
if �gðaÞ> �gðbÞ for each g 2 G and �gðaÞ > �gðbÞ for at least one g 2 G. We de"ne
� and < similarly and extend this notation to matrices if it holds entry-by-entry.
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Let A be matrix over ZG. We say that A is very positive if A
 0 and A is
strictly positive if A > 0.

The augmentation map � : ZG! Z sends an element
P

ngg to
P

ng. Applying
� entry-wise to a matrix A with entries in ZG produces a matrix �ðAÞ with
entries in Z.

In this paper, a ring means a ring with 1. Let R be a ring. Then EðRÞ has
already been de"ned; Eðn;RÞ is de"ned likewise, for n � n rather than N � N

matrices. See the beginning of x 8 for more.

2.2. Flows and sections

Let Y be a compact metrizable space. In this paper, a �ow on Y will be an
R-action on Y , given by a continuous map � : R � Y ! Y , where � is locally
injective (the 5ow has no rest points). Two 5ows are topologically conjugate, or
conjugate, if there is a homeomorphism intertwining their R-actions. Two 5ows are
equivalent if there is a homeomorphism between their domains taking R-orbits to
R-orbits and preserving orientation (that is, respecting the direction of the 5ow).

A compact subset C of Y is a cross section of the 5ow if the restriction of �
to R � C is a surjective local homeomorphism. (In this case, the return map to C
is a well-de"ned homeomorphism R : C ! C; the return time r is a continuous
function on C; and the given 5ow is topologically conjugate to the ‘5ow under the
function’ built from R and r.) We say that R is a section to the 5ow. Two
homeomorphisms are �ow equivalent if they are topologically conjugate to sections
of a common 5ow. (Homeomorphisms f and g are topologically conjugate if there
is a homeomorphism h such that hf ¼ gh.) Sections of two 5ows are 5ow
equivalent if and only if the 5ows are equivalent.

In the case that T1 and T2 are homeomorphisms of zero-dimensional compact
metrizable spaces, Parry and Sullivan [30] showed that T1 and T2 are 5ow
equivalent if and only if there is a third homeomorphism T such that there are
discrete towers T 01 and T 02 over T which are topologically conjugate to T1 and T2

respectively. (A discrete tower is a homeomorphism ðX 0; T 0Þ built from ðX; T Þ by
partitioning X into "nitely many closed open sets Ci, picking for each i a positive
integer ni, making X 0 the disjoint union of the sets Ci � fjg, where 16 j6ni, and
for x 2 Ci setting T 0ðx; kÞ ¼ ðx; kþ 1Þ when k < ni, and T 0ðx; niÞ ¼ ðTx; 1Þ. Here
ðX; T Þ is called the base of the tower.)

2.3. G-�ows and G-sections

By a G-�ow we mean a 5ow together with a continuous free right G-action
which commutes with the 5ow (tðygÞ ¼ ðtyÞg). By a G-homeomorphism we mean a
homeomorphism together with a continuous free right G-action with which it
commutes. Two G-5ows are G-conjugate if the 5ows are topologically conjugate
by a map which intertwines the G-actions. Two G-5ows are G-equivalent if the
5ows are equivalent by a map which intertwines the G-actions (fðxgÞ ¼ ðfxÞg). A
G-cross section to a G-5ow is a cross section C which is G-invariant. Then there is
an induced G-action on C with which R becomes a G-homeomorphism, and we
say that the G-homeomorphism R is a G-section to the G-5ow. A discrete G-tower
ðX 0; T 0Þ over a G-homeomorphism ðX; T Þ is a discrete tower over ðX; T Þ, together
with a G-action ðx; jÞ 7! ðxg; jÞ (in the notation above) induced by the G-action
x 7! xg for ðX; T Þ.
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The standard theory carries over to the G setting. We say that two
G-homeomorphisms are G-�ow equivalent if they are conjugate to G-sections of
the same G-5ow. Thus G-sections of two G-5ows are G-5ow equivalent if and only
if the 5ows are G-equivalent. In the case that T1 and T2 are G-homeomorphisms of
zero-dimensional compact metrizable spaces, T1 and T2 are G-5ow equivalent if
and only if there is a third G-homeomorphism T such that there are discrete
G-towers T 01 and T 02 over T which are G-conjugate to T1 and T2 respectively.

2.4. Skew products

Let T : X ! X be a homeomorphism, with X zero-dimensional. Let # be a
continuous map from X into the "nite group G. De"ne a homeomorphism

S : X � G! X � G

by the rule ðx; hÞ 7! ðT ðxÞ; #ðxÞhÞ. With the natural right G-action on X � G,
g : ðx; hÞ 7! ðx; hgÞ, S is a G-homeomorphism. Note that S is Tn#G, the skew
product over T built from the skewing function # .

Conversely, suppose that S : X ! X is a G-homeomorphism, with X zero-
dimensional. Let q : X ! X be the map onto the quotient space of G-orbits, and
let T be the homeomorphism induced by S on X. Because X is zero dimensional
and the G-action is free, we can "nd a closed open subset C of X such that
fCg : g 2 Gg is a partition of X. Using the homeomorphism qjC, identify X with
C. Using the maps Cg! C � G (xg 7! ðx; gÞ), identify X with C � G. In this
notation, q is the standard projection C � G! C, and the G-action on C � G is
h : ðx; gÞ 7! ðx; ghÞ. To display the skew product structure, de"ne # : C ! G by
setting #ðxÞ ¼ g if SðxÞ 2 Cg. It follows for x 2 C that S : ðx; eÞ 7! ðT ðxÞ; #ðxÞeÞ.
Because S commutes with the G-action, we conclude that for any ðx; gÞ we have
S : ðx; gÞ ! ðT ðxÞ; #ðxÞgÞ. So, up to G-conjugacy, every G-homeomorphism of a
zero-dimensional space is a skew product.

Finally, suppose we have a G-homeomorphism T . The given G-action induces a
natural G-action on the mapping torus Y of T , with respect to which the natural
5ow on Y is a G-5ow, and T is conjugate to the obvious G-section of this 5ow.

2.5. Cocycles

Let T : X ! X be a homeomorphism. We may regard a continuous skewing
function # : X ! G as de"ning a cocycle for T . We say that two such skewing
functions # and ' are cohomologous if there is another continuous function h from
X into G such that for all x in X, #ðxÞ ¼ ½hðxÞ��1'ðxÞhðTxÞ. Such a function h is
called a transfer function. It is an easy exercise to verify that two skew products
T1n#G and T2n'G are G-conjugate if and only if there is a topological conjugacy
( of T1 and T2 such that # � ( is cohomologous to '.

2.6. Shifts of �nite type and matrices over Zþ

Here we give minimal background for shifts of "nite type (SFTs). See the texts
[22, 23] for an introduction to SFTs.

In this subsection, all matrices will be N � N with entries in Zþ and (except for
the identity matrix I) with all but "nitely many entries equal to zero. (In
particular, det ðI � AÞ is well de"ned as a limit of the determinants of the
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principal f1; 2; . . . ; ng � f1; 2; . . . ; ng submatrices.) Given such a matrix A, let GA
be the directed graph with vertex set N and with exactly Aði; jÞ edges from i to j.
Let E be the edge set and de"ne NA to be the subset of ZE realized by bi-in"nite
paths in GA. With the natural topology, NA is a zero-dimensional compact
metrizable space. Let )A : NA ! NA be the shift map, ð)AðsÞÞi ¼ siþ1. The
homeomorphism )A is the edge SFT induced by A. Every SFT is topologically
conjugate to some edge SFT.

Matrices A and B over a semiring R are strong shift equivalent (SSE) over R if
they are connected by a string of elementary moves of the following sort: there are
R and S over R such that A ¼ RS and B ¼ SR. A fundamental result in symbolic
dynamics is that )A is topologically conjugate to )B if and only if A is SSE over
Zþ to B [39]. Re"ned computable invariants of SSE are known, but it is still not
known even if SSE over Zþ is decidable.

If A ¼ ðAijÞ and

B ¼

0 A11 � � � A1n

1 0 � � � 0
0 A21 � � � A2n

..

. ..
. ..

.

0 An1 � � � Ann

0
BBBBB@

1
CCCCCA
;

then we say that A and B are connected by a Parry--Sullivan move or a PS move.
It follows from the Parry--Sullivan result described above that SFTs )A and )B

are 5ow equivalent if and only if the matrices A and B can be connected by SSE
and Parry--Sullivan moves [30]. (The Parry--Sullivan moves allow for building the
discrete towers.)

An SFT )A is irreducible if for any edges e and f which appear in points of NA,
there is a path in GA beginning with e and ending with f. When )A and )B are
irreducible and non-trivial (not just a single periodic orbit), they are 5ow equivalent if
and only if the matrices I � A and I � B are SLðZÞ-equivalent. This equivalence is
determined by two simple invariants: the Parry--Sullivan number detðI � AÞ and the
isomorphism class of the Bowen--Franks group cokðI � AÞ [30, 4, 14]. The Huang
classi"cation of reducible SFTs up to 5ow equivalence is much more complicated.
(Huang’s original arguments are developed in [16, 17, 18, 19] and an almost complete
unpublished manuscript, ‘The K-web invariant and 5ow equivalence of reducible
shifts of "nite type.’ A complete alternate development is contained in [6, 8].) In
this paper, we only address G-5ow equivalence of irreducible SFTs.

2.7. Skew products, G-SFTs and matrices over ZþG

By a G-SFT we mean an SFT together with a free G-action with which it
commutes. (Usually ‘ G-SFT’ is not restricted to free actions [10, 11, 12]; we adopt
the restriction only for this paper, where we only consider free actions.) In this
subsection, we shall consider presentations of G-SFTs.

Let A be an N � N matrix with entries in ZþG and with all but "nitely many
entries equal to zero. Such a matrix A determines a weighted directed graph GA as
follows. As an unweighted graph, it is the graph G�ðAÞ. Recall that � is the
augmentation map (x 2.1). If Aði; jÞ ¼

P
ngg then exactly ng of the edges from i

to j are weighted g. Let ‘ðeÞ denote the weight on an edge e. De"ne a locally
constant function #A : N�ðAÞ ! G by the rule x 7! ‘ðx0Þ. This function then de"nes
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a skew product over )�ðAÞ. This skew product can be presented as an edge SFT
with the graph G constructed as follows. Let the vertex set of G be the product of
G and the vertex set of G�ðAÞ. For each edge e from i to j in G�ðAÞ, for each g in G
draw an edge from ðg; iÞ to ð‘ðeÞg; jÞ: We write SA ¼ )�ðAÞn#A. To make SA a
G-SFT, for each pair of vertices v; v 0 of G, we choose an ordering of the edges from
v to v 0, and then let g in G act by the one-block map given by the unique
automorphism of G which acts on the vertex set G by ðh; jÞ 7! ðhg; jÞ and which is
order-preserving on edges.

It is not diBcult to see that for any locally constant function into G from a
SFT ), there are a matrix A over ZþG and a topological conjugacy from ) to
)�ðAÞ which takes the given function to #A, and therefore any G skew product over
an SFT can be presented as some SA. Moreover, a G-SFT can be presented as a
skew product (x 2.4, our assumption of freeness is necessary for this), and it is not
diBcult to see that the base map for this skew product must be an SFT in order
for the skew product to be an SFT. Thus all G-SFTs are G-conjugate to those
arising by this construction of SA.

PROPOSITION 2.7.1 (W. Parry, personal communication 2001). Let G be a
�nite group. The following are equivalent for matrices A and B over ZþG and
their associated skew product systems SA and SB:

(1) A and B are SSE over ZþG;
(2) there is a topological conjugacy ’ : )�ðAÞ ! )�ðBÞ such that #A � #B � ’;
(3) the G-SFTs SA and SB are G-conjugate.

Proof. We will prove that (2) implies (1). As shown by Parry [27], the given
conjugacy ’ can be given as a string of state splittings from �ðAÞ to some C followed
by the reversal of a string of state splittings from �ðBÞ to C. The SSEs over Zþ that
give the splittings are easily adapted to SSEs over ZþG which re5ect the
corresponding lifting of edge labelings (we give an example following the proof). In
this way, we produce ZþG matrices A 0 and B 0 such that �ðA 0Þ ¼ C ¼ �ðB 0Þ, the
skewing functions derived from A 0 and B 0 are the functions lifted from the skewing
functions de"ned from A and B, and they are cohomologous. If h is a continuous
transfer function giving the cohomology of these functions, then in fact hðxÞ is
determined by the initial vertex of x0 ([28, Lemma 9.1] proves this for irreducible
SFTs, and the essential ideas of that proof can be extracted to prove the general case).
Therefore there is a diagonal matrix D with Dði; iÞ ¼ gi 2 G, such that
DA 0D�1 ¼ B 0. The ZþG strong shift equivalence from A 0 to DA 0D�1 is given by
the pair ðA 0D�1; DÞ. �

Above, in restricting to ZG with G "nite, we have not given the most general
statement of Parry’s results.

Example 2.7.2. Here is the example promised in the preceding proof. Let

A ¼ g h
j kþ ‘

� 	
over some ZþG:
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Consider the row splitting of �ðAÞ de"ned by the elementary SSE

�ðAÞ ¼
1 1

1 2

� 	
¼

1 0 1

0 1 2

� 	 1 0

1 0

0 1

0
B@

1
CA;

1 0 1

1 0 1

0 1 2

0
B@

1
CA ¼

1 0

1 0

0 1

0
B@

1
CA 1 0 1

0 1 2

� 	
:

Then the ZþG SSE which captures the label lifting is simply

A ¼
g h

j kþ ‘

� 	
¼

g 0 h

0 j kþ ‘

� 	 1 0

1 0

0 1

0
B@

1
CA;

g 0 h

g 0 h

0 j kþ ‘

0
B@

1
CA ¼

1 0

1 0

0 1

0
B@

1
CA g 0 h

0 j kþ ‘

� 	
:

Remark 2.7.3. The equivalence of (1) and (2) in Proposition 2.7.1,
established by Parry following the related innovation of Parry and Tuncel for
Markov chains [27, 31], is a key step to a proper algebraic approach to G-SFTs.
Otherwise, the facts and constructions above are at most minor variations of
well-known results (see, for example, [12, x 3.2; 10, 1, 27, 28]). We also remark
that [20] gives a realization result for G-SFTs which employs the positive
K-theory technique introduced in [21].

3. Positive equivalence

Below, we allow a square matrix to be n � n or N � N. In"nite matrices A and
B are non-zero in only "nitely many entries. Thus in"nite matrices I � A and
I � B equal the in"nite identity matrix except in "nitely many entries.

DEFINITION 3.1. A square matrixM over Z or ZG is irreducible if its entries are
non-negative (that is, in Zþ or ZþG) and for each index pair ði; jÞ there is a k > 0 with
Mkði; jÞ > 0. The matrix M is essentially irreducible if it has a unique principal
submatrix that is irreducible and that is contained in no larger irreducible principal
submatrix. Such a submatrix is called the irreducible core of M.

We consider matrices over ZG. A basic elementary matrix is a matrix of the
form EijðxÞ, which denotes a matrix equal to the identity except for perhaps the
o;-diagonal ij entry (so, i 6¼ j), which is equal to x. Suppose g 2 G, E ¼ EijðgÞ
and A is a square matrix over ZþG such that g is a summand of Aði; jÞ. Then we
say that each of the equivalences

ðE; IÞ : ðI � AÞ ! EðI � AÞ; ðE�1; IÞ : EðI � AÞ ! ðI � AÞ;
ðI; EÞ : ðI � AÞ ! ðI �AÞE; ðI; E�1Þ : ðI � AÞE ! ðI �AÞ

is a basic positive equivalence over ZG. Here the equivalences ðE; IÞ and ðI; EÞ are
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forward basic equivalences while ðE�1; IÞ and ðI; E�1Þ are backward basic
equivalences.

DEFINITION 3.2. An equivalence ðU; V Þ : ðI � AÞ ! ðI � BÞ is a positive
equivalence if it is a composition of basic positive equivalences. When there
exists a positive equivalence from I � A to I � B, we write I �A�þ I � B.

The e;ect of a basic positive equivalence on the induced graph is discussed in
detail in [7, p. 278] when G is trivial. Our situation is entirely analogous. Suppose
ðE; IÞ : ðI � AÞ ! ðI �A 0Þ is a basic forward positive equivalence, E ¼ EijðgÞ.
Then A and A 0 agree except perhaps in row i, where

A 0ði; kÞ ¼ Aði; kÞ þ gAðj; kÞ if k 6¼ j;

and

A 0ði; jÞ ¼ Aði; jÞ þ gAðj; jÞ � g:

Consequently, the weighted graph G0 associated to A 0 is constructed from the
weighted graph G for A as follows. An edge e from i to j with weight g is deleted
from G. For each G-edge f beginning at j, add an additional edge (called ½ef �)
from i to k with weight gh (where h is the weight of f and k is the terminal vertex
of f). See Figure 1. (There, G-labels are suppressed for simplicity. If the labels of
the edges e; f 0; f 00 are g; h 0; h 00, then the labels of the new edges ½ef 0�; ½ef 00� are
gh 0; gh 00.)

The correspondence of the graphs G and G0 induces a bijection of )A-orbits and
)A 0 -orbits,

. . . befcegfeffd . . .  ! . . . b½ef �cegf ½ef �fd . . . :

This bijection of orbits does not arise from a bijection of points for the SFTs, but
it does correspond to a homeomorphism of their mapping tori (after changing time
by a factor of 2 over the clopen sets fx : x0 ¼ ½ef �g, the new 5ow is conjugate to
the old one), which lifts to a G-equivariant equivalence of the mapping tori 5ows
for the respective skew products.

The bijection of orbits above respects "niteness of orbits and the induced
homeomorphism of mapping tori above respects density of orbits. Consequently,
positive equivalence respects essential irreducibility and non-triviality (in"nite
number of orbits). Positive equivalence need not respect the size of the irreducible
core of a presenting matrix.

Figure 1. A basic positive equivalence.
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THEOREM 3.3. Let G be a �nite group, and let A and B be square matrices
over ZþG. Then I � A�þ I � B if and only if SA and SB are G-�ow equivalent.

Proof. We explained above that I � A�þ I � B implies the G-5ow equivalence
of SA and SB. Now suppose that SA and SB are G-5ow equivalent.

First suppose that SA and SB are G-conjugate. Then by Proposition 2.7.1, B
and A are SSE over ZþG. In the polynomial setting of [9], the G-weighted SFTs
de"ned by A and B can be presented by polynomial matrices I � tA and I � tB,
and any SSE over ZþG from A to B gives rise to a composition of polynomial
positive equivalences via the polynomial strong shift equivalence equations [9,
Theorem 7.2]. These equivalences, when the variable t has been set equal to 1,
produce a positive equivalence from I � A to I � B.

In the polynomial setting of [9], a matrix I � tA as above can be positively
equivalent to a matrix I �BðtÞ, where the entries of BðtÞ may involve higher
powers of the variable t. A matrix BðtÞ over tZþG½t� presents a discrete G-tower
whose base is obtained by setting every tm to t, and up to G-conjugacy every
discrete G-tower over a G-SFT arises in this way. Changing tn to tm does not
change the image under t 7! 1. �

Remark 3.4. There is a more complicated way to handle the preceding proof,
along the lines of [7, pp. 296--297] (which was the case ZG ¼ Z). One can provide
a decomposition of a state-splitting SSE move into positive equivalences, and
provide a separate decomposition for an SSE which for some i corresponds to
multiplying row i by g and column i by g�1. Such moves generate SSE over ZþG.
Lastly one can decompose a PS move into a "nite string of basic positive
equivalences.

4. The weight class

Suppose A is a matrix over ZþG, with #A the associated labeling of edges. The
weight of a path e of edges e1e2 . . . ek from vertex i to j is de"ned to be

#ðeÞ ¼ #Aðe1Þ#Aðe2Þ . . . #AðekÞ:

(So, g is the weight of some path from i to j if and only if �gðAnði; jÞÞ > 0 for
some n 2 N.)

DEFINITION 4.1. Suppose G is a "nite group, A is an essentially irreducible
matrix over ZþG, and i is a vertex indexing a row of the irreducible core of A.
Then WiðAÞ is the subgroup of G which is the set of weights of paths from i to i,
and the weight class of A, W ðAÞ, is the conjugacy class of WiðAÞ in G. A member
of W ðAÞ is a weights group for A; if WðAÞ contains one element, then it is the
weights group for A.

Let us verify two implicit claims of the de"nition. First, WiðAÞ is a group
because it is a semigroup and G is "nite. Second, we check given i 6¼ j that Wi

and Wj are conjugate subgroups in G. Appealing to irreducibility, let x be the
weight of some path from i to j and let y be the weight of some path from j to i.
Because G is "nite, we may assume y ¼ x�1 (if necessary after replacing y with
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yðxyÞk for suitable k). Then xWjx
�1 ¼Wi, because

Wi � xWjx
�1 � xðx�1WixÞx�1 ¼Wi:

If G is abelian, then there is only one group in the weight class of A, and it is the
union of the WiðAÞ. If G is not abelian, then

S
i WiðAÞ can generate a group

strictly containing each WiðAÞ, and this larger group will not be the right group
for our analysis.

PROPOSITION 4.2. Suppose A is an irreducible matrix over ZþG, and there is
a positive ZþG-equivalence from I � A to I � B. Then W ðAÞ ¼W ðBÞ.

Proof. From the description in x 3, it is clear that when there is a basic
positive equivalence from I �A to I � B, there must be a vertex i, indexing a row
in the irreducible core of A and also in the irreducible core of B, such that WiðAÞ
and WiðBÞ are equal. �

Example 4.3. Suppose G is any non-trivial "nite group. Let g be an element
of G not equal to the identity e. In the ring ZG, the formal element e is the
multiplicative identity 1. Consider the matrices over ZþG,

A ¼ g 1
1 1

� 	
and B ¼ 0 1

1 1

� 	
:

The weight class W ðBÞ is trivial while W ðAÞ is not, so by Proposition 4.2 there
cannot be a positive ZG-equivalence from I � A to I �B. However, there is an
EðZGÞ-equivalence:

1 �g
0 1

� 	
ðI � AÞ ¼ 1 �g

0 1

� 	
1� g �1
�1 0

� 	
¼ 1 �1
�1 0

� 	
¼ I � B:

Example 4.3 shows that positive ZG-equivalence of non-trivial irreducible SA

does not follow from EðZGÞ-equivalence. This issue is clari"ed in the positive
K-theory framework [6, x 8].

We will use the next lemma to pass from a matrix A over ZþG to a matrix over
ZþH, when H is in the weight class. The lemma is modeled on the Parry--Schmidt
argument [29] for presentations of Markov chains. Recall that � denotes the
augmentation map (x 2.1).

PROPOSITION 4.4. Suppose A is an irreducible matrix over ZþG, and H is a
group in the weight class of A. Then there is a diagonal matrix D over ZþG with
each diagonal entry in G (that is, �ðDÞ ¼ Id) such that every entry of DAD�1 lies
in ZþH.

Proof. First consider H ¼W‘ðAÞ, where ‘ is some vertex of A. For each j pick
a path from ‘ to j and let the jth diagonal element dj of D be the G-weight of this
path. Let bj be the G-weight of a path from j back to ‘. Now, if Aði; jÞ has h as a
summand, then dihd

�1
j is the corresponding summand in DAD�1ði; jÞ. Write

dihd
�1
j ¼ ðdihbjÞðdjbjÞ�1:ð4:5Þ
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Let k be the order of djbj in G. Then the right-hand side of (4.5) is
ðdihbjÞðdjbjÞk�1, a product of weights from ‘ to ‘.

Finally, if H ¼ gW‘ðAÞg�1, then replace D above with gD. �

The following example is extracted from an example of Derek Holt analyzed by
Parry [28, x 10], and shows that cohomology over G does not imply cohomology
over a group in the weight class.

Example 4.6. Let G ¼ S4, the group of permutations of f1; 2; 3; 4g. De"ne
permutations a ¼ ð12Þð34Þ, b ¼ ð13Þð24Þ, and c ¼ ð14Þð23Þ. Let H be the subgroup
fe; a; b; cg ffi Z=2� Z=2. Consider two 1 � 1 matrices over ZþH, A ¼ ðaþ bÞ and
B ¼ ðaþ cÞ. Let d be the transposition ð12Þ, so dad�1 ¼ a and dbd�1 ¼ c. Then

dAd�1 ¼ B and there is a positive ZG-equivalence from I �A to I � B. On the
other hand, if we consider A and B as matrices over ZþG, we see that fHg is the
weight class of A and B ( H is a normal subgroup of G), but the matrices I � A
and I � B are not even SLðZHÞ-equivalent: the determinant is de"ned for
matrices over the commutative ring ZH, and detðI �AÞ 6¼ detðI �BÞ.

Fortunately, the passage from G to the weight class is no worse than indicated
by the previous example.

THEOREM 4.7. Let A and B be essentially irreducible matrices over ZþH,
such that H is a weights group for A and B, and H is a subgroup of the �nite
group G. Then there is a positive ZþG-equivalence from I �A to I � B if and
only if there exists an element � of G such that

(i) �H��1 ¼ H, and
(ii) there is a positive ZþH-equivalence from I � A to I � ��1B�.

Proof. We will prove the non-trivial direction (‘only if’). The assumed positive
ZG-equivalence from I � A to I � B involves time changes as well as conjugacies,
and we re"ne the discussion of the proof of Proposition 2.7.1 to incorporate these
time changes; they can be captured by including with the splittings from A to C a
set of Parry--Sullivan moves, which can, like the splittings, be mirrored in the
positive equivalence framework using only matrices over ZþH. Thus, as in the
proof of Proposition 2.7.1, we end up with: �ðA 0Þ ¼ C ¼ �ðB 0Þ; a diagonal D with
Dði; iÞ ¼ gi 2 G such that DA 0D�1 ¼ B 0; a positive ZþH-equivalence from I � A
to I �A 0; and another from I �B to I � B 0.

Let #A and #B denote the edge-labeling functions de"ned by A 0 and B 0. Then
for any path e ¼ e1e2 . . . ek of edges from vertex i to vertex j, we have

gi#AðeÞðgjÞ�1 ¼ #BðeÞ:ð4:8Þ
Because H is a weights group for A and B and all entries of A and B are in ZþH,
it holds for each pair of vertices i; j in the irreducible core that every element of H
arises as #AðeÞ for some path e from i to j. Because the right side of (4.8) lies in

H, we have giHðgjÞ�1 � H. We conclude for every i; j that giHðgjÞ�1 ¼ H. Let
� ¼ g1. For each j,

H ¼ gjH��1 ¼ gj�
�1ð�H��1Þ ¼ gj�

�1H

and therefore for some hj 2 H we have gj ¼ hj�. Now D ¼ ðD 0Þ�I, where

PLMS 1528---24/3/2005---SRUMBAL---140267

EQUIVARIANT FLOW EQUIVALENCE 11



D 0ðj; jÞ ¼ hj, and therefore

��1B 0� ¼ ð��1D 0�ÞA 0ð��1D 0�Þ�1:
The entries of ��1D 0� lie in ZþH. We have now a ZþH SSE from A 0 to ��1B 0�.
The ZþH SSE from B 0 to B yields a ZþH SSE from ��1B 0� to ��1B�, by
replacement of each elementary SSE ðR;SÞ with ��1R�; ��1S�. Thus we have a
ZþH SSE from A 0 to ��1B�, and there is a positive ZþH-equivalence from I � A 0

to I � ��1B�, and by composition from I � A to I � ��1B�. �

Theorem 4.7 is reminiscent of a similar reduction of Parry and Schmidt in their
extension of LivOssic theory to non-abelian cocycles [28, Theorems 6.4, 9.5; 33].
They were particularly concerned with deducing cohomology of certain G-valued
functions given conjugate weights on each periodic orbit. This is a much stronger
assumption than we use, and yields a correspondingly stronger conclusion.

5. Equivalence through very positive matrices

In this section we give the heart of the proofs of our main results. Throughout this
section k denotes a positive integer greater than 1 and all matrices will be k � k.
Let Mþ denote the set of k � k very positive matrices over ZG (‘very positive’
was de"ned in x 2.1). We say that an equivalence ðU; V Þ is a basic elementary
equivalence if one of U or V is I and the other has the form EijðgÞ or Eijð�gÞ.

DEFINITION 5.1. An equivalence ðU; V Þ : B! B 0 is a positive equivalence
through Mþ if it can be given as a composition of basic elementary equivalences
over ZG,

B ¼ B0 ! B1 ! B2 ! . . .! Bn ¼ B 0;

such that every Bi is in Mþ.

LEMMA 5.2. Suppose ðU; V Þ : A� I ! A 0 � I is a positive equivalence
through Mþ. Then ðU; V Þ : I � A! I � A 0 is a positive equivalence.

Proof. It suBces to consider the case that ðU; V Þ is a basic elementary
equivalence, and this case is clear. �

The lemma explains our interest in the following theorem.

THEOREM 5.3. Suppose U and V are in Eðk;ZGÞ and UBV ¼ B 0, with B and
B 0 matrices in Mþ. Suppose also that there are matrices X and Y in Eðk;ZGÞ
such that XBY ¼ D, where D has block diagonal form I2 � F .

Then ðU; V Þ : B! B 0 is a positive equivalence through Mþ.

The rest of this section is devoted to the proof of Theorem 5.3, which
generalizes the arguments of [7, x 5]. We begin with a de"nition.

DEFINITION 5.4. A signed transposition matrix is the matrix of a transposi-
tion, but with one of the o;-diagonal 1s replaced by �1. A signed permutation
matrix is any product of signed transposition matrices.

PLMS 1528---24/3/2005---SRUMBAL---140267

MIKE BOYLE AND MICHAEL C. SULLIVAN12



It is not diBcult to verify that the matrix of any even permutation is a signed
permutation matrix.

Recall that �ðAÞ is the matrix obtained by applying the augmentation map �
to A entrywise.

LEMMA 5.5. Suppose B 2Mþ and E ¼ EijðgÞ or E ¼ Eijð�gÞ where
g 2 G. Suppose the ith row of �ðEBÞ is not the zero row. Then in Eðk;ZGÞ
there are a non-negative matrix Q and a signed permutation matrix S such that
ðSE;QÞ : B! SEBQ is a positive equivalence through Mþ.

Proof. If Eði; jÞ ¼ g, then let Q ¼ I ¼ S. Now, suppose Eði; jÞ ¼ �g. Select
l such that �ðBði; lÞ � gBðj; lÞÞ 6¼ 0, and set x ¼ Bði; lÞ � gBðj; lÞ, that is
x ¼ ðEBÞði; lÞ. Let y ¼

P
h2G h 2 ZG. Then xy ¼

P
ð
P

xfÞh, where x ¼
P

xff ,
with all sums over G. Thus all coeBcients ðxyÞh of xy are the same non-
zero number.

Case I: xy
 0. Here we may repeatedly add y times column l of B to the other
columns, until we have a matrix B 0 with B 0ði;mÞ 
 B 0ðj;mÞ for all m ¼ 1; . . . ; k.
This B 0 is BQ for some Q which is a product of non-negative basic elementary
matrices, and ðE;QÞ : B! EBQ is the composition of positive equivalences
through Mþ, ðI;QÞ : B! BQ followed by ðE; IÞ : BQ! EBQ. Let S ¼ I.

Case II: xy� 0. For concreteness of notation, let ði; jÞ ¼ ð1; 2Þ. Let Ml denote
(in this proof only) row l of a matrix M. We can choose a suitable Q, in the
manner of Case I, to obtain Q non-negative such that ðBQÞ2 
 ðBQÞ1 and
ðgBQÞ2 
 ðBQÞ1 and ðI;QÞ : B! BQ is a positive equivalence in Mþ. For
simplicity of notation, we now write BQ as B and we restrict what we write to
rows 1 and 2, for example,

E ¼ 1 �g
0 1

� 	
and B ¼ B1

B2

� 	
:

Let S ¼ 0 1
�1 0

� �
. Then

ðSEÞB ¼
0 1

�1 0

� 	
1 �g
0 1

� 	
B1

B2

� 	

¼
0 1

�1 g

� 	
B1

B2

� 	
¼

B2

gB2 � B1

� 	

 0:

Write SE as the product

SE ¼ E1E2E3E4 ¼
1 0
�1 1

� 	
1 0
g 1

� 	
1 1
0 1

� 	
1 0
�1 1

� 	
:

Write the equivalence SE : B! SEB as the composition of left multiplications by
E1, E2, E3, E4:

B1

B2

� 	
! B1

B2 � B1

� 	
! B2

B2 �B1

� 	
! B2

B2 � B1 þ gB2

� 	
! B2

gB2 � B1

� 	
:

This "nishes the proof. �

LEMMA 5.6. Suppose B is a k � k matrix over ZG and �ðBÞ has rank at least
2. Suppose U 2 Eðk;ZGÞ, and no row of �ðBÞ or �ðUBÞ is the zero row. Then U is
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the product of basic elementary matrices, U ¼ En . . .E1, such that for 16 j6n
the matrix �ðEjEj�1 . . .E1BÞ does not have a zero row.

Proof. Without loss of generality, assume U 6¼ I. The proof is clear for k ¼ 2,
since �ðBÞ will have full rank. Let k> 3. (The reader may wish to work through
the proof for k ¼ 3 on a "rst reading.)

Let EðiÞ denote the set of ZG matrices which equal I both on the diagonal and
outside of row i. Let U be the set of factorizations U ¼ Un . . .U1 such that for
16h6n, the matrix Uh is not the identity and there is an index ih such that
Uh 2 EðihÞ. Given such a factorization U ¼ Un . . .U1, let

z ¼ #fh : 16h6n and row ih of �ðUh . . .U1BÞ is the zero rowg:

Step 1. We will produce an element of U for which z ¼ 0.
By induction, it suBces to begin with a factorization U ¼ Un . . .U1 from U for

which z > 0, and produce another factorization from U with reduced z. Pick s
minimal such that row is of �ðUs . . .U1BÞ is zero, and let t be minimal such that
t > s and it ¼ is. (This t exists because row is of �ðUBÞ is non-zero.) We will
change the factorization by replacing the subword Ut . . .Us with a suitable word
U 0T . . .U

0
s , to be de"ned recursively; T will be either t or t� 1.

First pick js 6¼ is such that row js of �ðUs�1 . . .U1BÞ is non-zero ( Us�1 . . .U1B
just denotes B in the case that s ¼ 1). Choose Fs an elementary matrix which acts
to add a multiple of row js to row is, such that (to avoid re-indexing) F�1s Us 6¼ I.
De"ne U 0s ¼ F�1s Us 2 EðisÞ. Now Ut . . .Us ¼ Ut . . .Usþ1FsU

0
s and row is of

�ðU 0sUs�1 . . .U1BÞ is not zero.
Now we give the recursive step. Suppose s < m ¼ rþ 16 t and we have produced

Ut . . .Urþ1Fm�1U
0
r . . .U

0
s ¼ Ut . . .Us (and consequently, Fm�1U

0
r . . .U

0
s ¼ Um�1 . . .Us)

such that there is a non-zero integer cm�1 and an index jm�1 6¼ is, such that
Fm�1ðis; jm�1Þ ¼ cm�1 and otherwise Fm�1 ¼ I. We will replace UmFm�1 with new
terms. There are three cases.

Case 1: m < t and jm�1 6¼ im. Set Fm ¼ Fm�1 and U 0rþ1 ¼ F�1m UmFm. For
example, if k ¼ 3 and ðis; im; jm�1Þ ¼ ð1; 2; 3Þ, then we would have for some a, b
and c,

U 0rþ1 ¼ F�1m UmFm ¼
1 0 �c
0 1 0

0 0 1

0
B@

1
CA

1 0 0

a 1 b

0 0 1

0
B@

1
CA

1 0 c

0 1 0

0 0 1

0
B@

1
CA

¼
1 0 �c
0 1 0

0 0 1

0
B@

1
CA

1 0 c

a 1 acþ b

0 0 1

0
B@

1
CA ¼

1 0 0

a 1 acþ b

0 0 1

0
B@

1
CA:

Now U 0rþ1 2 EðimÞ, and FmU
0
rþ1 ¼ UmFm�1, and row im of Um . . .U1B equals row

im of U 0rþ1U
0
r . . .U

0
sUs�1 . . .U1B.

Case 2: m < t and jm�1 ¼ im. Choose an index jm such that jm =2fim; isg and
row jm of �ðU 0r . . .U 0sUs�1 . . .U1BÞ is not zero. This is possible because rows
is and jm�1 of �ðU 0r . . .U 0sUs�1 . . .U1BÞ are linearly dependent (since row is of
FmU

0
r . . .U

0
sUs�1 . . .U1B equals row is of Um . . .U1B which is the zero row under �)
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and rankð�ðBÞÞ> 2. Pick Fm with Fmðis; jmÞ ¼ 1 and otherwise Fm ¼ I. Set
U 0rþ1 ¼ F�1m Fm�1 and U 0rþ2 ¼ F�1m UmFm. Now

(i) FmU
0
rþ2U

0
rþ1 ¼ FmðF�1m UmFmÞðF�1m Fm�1Þ ¼ UmFm�1,

(ii) U 0rþ1 2 EðisÞ and row is of �ðU 0rþ1 . . .U 0sUs�1 . . .U1BÞ is not zero,
(iii) U 0rþ2 2 EðimÞ and row im of U 0rþ2 . . .U

0
sUs�1 . . .U1B is equal to row im of

Um . . .U1B.
Case 3: m ¼ t. If UtFt�1 6¼ I, then set U 0T ¼ U 0rþ1 ¼ UtFt�1 2 EðisÞ: row is is the

same in the matrices U 0T . . .U
0
sUs�1 . . .U1B and Um . . .U1B. If UtFt�1 ¼ I, then

simply delete UtFt�1, so U 0T ¼ U 0r .
The new factorization has z reduced. This concludes Step 1.
Step 2. Suppose we have the factorization from U with z ¼ 0, U ¼ Un . . .U1,

with Uh 2 EðihÞ. For 16h6n, we will replace Uh with a suitable product of
elementary matrices in EðihÞ. The argument will be clear from the case h ¼ 1. For
notational simplicity, suppose i1 ¼ 1. Write U1 as a product U1 ¼ Ek1 . . .E1 of
basic elementary matrices which agree with I outside row 1. Now, choose a row
l > 1 of B such that row l of �ðBÞ is not a rational multiple of row 1 of �ðU1BÞ
(such a row l exists because rankð�ðBÞÞ > 1). Let E0 be the elementary
matrix which adds row l to row 1: if s > 0, then �ððE0ÞsBÞ has row 1 not zero.
Choose a non-negative integer m large enough that for 16 j6 k1, row 1 of
�ð½Ej . . .E1ðE0Þm�BÞ is non-zero. Then for 06 s6m,

½E�s0 �½Ek . . .E1ðE0Þm�B ¼ ½Em�s
0 �½Ek . . .E1�B

¼ ½Em�s
0 �U1B

and therefore row 1 of �ð½E�s0 �½Ek1 . . .E1ðE0Þm�BÞ cannot be zero. (Since each Ei,
for i ¼ 0; . . . ; k1, a;ects only row 1, they all commute with each other.) Thus the
factorization U1 ¼ ðE0Þ�mEk1 . . .E1ðE0Þm has the required properties. �

LEMMA 5.7. Suppose B and B 0 are in Mþ; �ðBÞ and �ðB 0Þ have rank at least
2; U and W are in Eðk;ZGÞ; the matrix �ðUBÞ has at least one strictly positive
entry; and UB ¼ B 0W . Then the equivalence ðU;W�1Þ : B! B 0 is a positive
equivalence through Mþ.

Proof. We divide the proof into four steps.
Step 1: reduction to the case �ðUBÞ has all entries positive. Consider an entry

�ððUBÞði; jÞÞ > 0. We can repeatedly add column j to other columns until row i of
�ðUBÞ has all entries strictly positive. This corresponds to multiplying from the
right by a non-negative matrix Q in Eðk;ZÞ � Eðk;ZGÞ, giving UBQ ¼ B 0WQ.
Then we can repeatedly add row i of UBQ to other rows until all entries of
�ðUBQÞ are positive. This corresponds to multiplying from the left by a matrix P
in Eðk;ZÞ, resulting in a matrix ðPUÞðBQÞ ¼ ðPB 0ÞðWQÞ whose augmentation has
all entries positive. Also, there are positive equivalences in Mþ given by

ðI;QÞ : B! BQ; ðP; IÞ : B 0 ! PB 0:

Therefore, after replacing ðU;B;B 0;W Þ with ðPU;BQ; PB 0;WQÞ, we may assume
without loss of generality that �ðUBÞ has all entries positive.

Step 2: factoring U and B! SUBQ through Mþ. By Lemma 5.6, we can write
U as a product of basic elementary matrices, U ¼ El . . .E1, such that for 16 j6 l,
the matrix �ðEj . . .E1BÞ has no zero row. By Lemma 5.5 and Step 1, given the
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pair ðE1; BÞ, there are a non-negative Q1 in Eðk;ZGÞ and a signed permutation
matrix S1 such that

ðS1E1; Q1Þ : B! S1E1BQ1

is a positive equivalence in Mþ. We observe that

UBQ1 ¼ S�11 ½S1ElS
�1
1 � . . . ½S1E2S

�1
1 �½S1E1�BQ1:

Now, for 26 j6 l, the matrix S1EjS
�1
1 is again a basic elementary matrix E 0j , and

the matrix �ðE 0j . . .E 02ðS1E1BQ1ÞÞ has no zero rows.
Again using Lemma 5.5, for the pair ð½S1E2S

�1
1 �; ½S1E1BQ1�Þ choose a signed

permutation matrix S2 and non-negative Q2 producing a positive equivalence
in Mþ,

ðS2½S1E2S
�1
1 �; Q2Þ : S1E1BQ1 ! S2½S1E2S

�1
1 �S1E1BQ1Q2;

so that we get a positive equivalence in Mþ,

ð½S2S1E2S
�1
1 �½S1E1�; Q1Q2Þ : B! ½S2S1E2E1BQ1Q2�;

and we observe that

UBQ1Q2 ¼ S�11 S�12 ½S2S1ElS
�1
1 S�12 � . . .

. . . ½S2S1E3S
�1
1 S�12 �½S2S1E2S

�1
1 �½S1E1�BQ1Q2:

Continue this, to obtain a signed permutation matrix S ¼ Sl . . .S1 and non-
negative Q ¼ Q1 . . .Ql such that

UBQ ¼ S�1½Sl . . .S1ElS
�1
1 . . .S�1l�1� . . . ½S2S1E2S

�1
1 �½S1E1�BQ

¼ S�1ðSUBQÞ

and ðSU;QÞ : B! SUBQ is a positive equivalence in Mþ.
Step 3: realizing the permutation. We continue from Step 2. It remains to

show that

ðS; IÞ : UBQ! SUBQ

is a positive equivalence in Mþ. Since S is a product of signed transposition
matrices, it may be described as a permutation matrix in which some rows have
been multiplied by �1. Since UBQ and SUBQ are strictly positive, it must be that
S is a permutation matrix. Also, detðSÞ ¼ 1, so if S 6¼ I then S is the matrix of a
permutation which is a product of 3-cycles. So it is enough to realize the positive
equivalence in Mþ in the case that S is the matrix of a 3-cycle. For this we write
the matrix

C ¼
0 1 0
0 0 1
1 0 0

0
@

1
A

as the following product C0C1 . . .C5:

1 0 0
0 1 0
0 �1 1

0
@

1
A 1 0 0
�1 1 0
0 0 1

0
@

1
A 1 0 �1

0 1 0
0 0 1

0
@

1
A 1 1 0

0 1 0
0 0 1

0
@

1
A 1 0 0

0 1 0
1 0 1

0
@

1
A 1 0 0

0 1 1
0 0 1

0
@

1
A:

For 06 i6 5, the matrix CiCiþ1 . . .C5 is non-negative. Therefore the equivalence
ðC; IÞ : A! CA is a positive equivalence through Mþ whenever A 2Mþ.
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Step 4: conclusion. We now have several positive equivalences through Mþ,
namely ðSU;QÞ : B! SUBQ, ðS�1; IÞ : SUBQ! UBQ, and ðI;Q�1Þ : UBQ! UB.
By composition, ðU; IÞ is a positive equivalence through Mþ from B to
UB ¼ B 0W . By a similar argument (invoking corollaries to Lemmas 5.5 and 5.6
for multiplications on the right), we can show that ðI;W Þ is a positive equivalence
through Mþ from B to B 0W . This proves Lemma 5.7. �

Proof of Theorem 5.3. We will use Lemma 5.7 twice: "rst to give a positive
equivalence from B to itself, and then to give another from B to B 0. The inverse
of the "rst followed by the second will equal ðU; V Þ and thus establish that ðU; V Þ
is a positive equivalence.

Notation. For a 2 � 2 matrix H and m 2 N let

L ¼ LmðHÞ ¼
m �1
1 0

� 	
H � Ik�2:

For a matrix Q let Qf12; !g denote the submatrix consisting of the "rst two rows
of Q.

By assumption, there are matrices X and Y in Eðk;ZGÞ such that XBY ¼ D,
where D has block diagonal form I2 � F .

Step 1. We will show that for a suitable 2 � 2 matrix H and integer m large
enough the self equivalence ðX�1LX; YL�1Y �1Þ : B! B is a positive equivalence.
The matrix �ðXBY Þf12; !g ¼ �ðDÞf12; !g has rank 2, so �ðXBÞf12; !g has
rank 2, and thus there exists an H 2 SLð2;ZÞ such that the "rst row R of
H½�ðXBÞf12; !g� has both a positive and a negative entry.

Let C be the "rst column of �ðX�1Þ ¼ �ðXÞ�1. Since C is not the zero vector,
the k � k matrix CR has a positive and a negative entry.

Now, if m is suBciently large, then the corresponding entries of �ðX�1LXBÞ
and CR will have the same sign provided the corresponding entry of CR is
not zero.

We now apply Lemma 5.7 to see that ðX�1LX; YL�1Y �1Þ is a positive
equivalence from B to itself.

Step 2. For large enough m the entries of �ðUX�1LXBÞ agree in sign with the
corresponding non-zero entries of �ðUÞCR. Since �ðUÞ is non-singular, the matrix
�ðUÞCR is non-zero and so contains positive and negative entries, because R does.
Thus, by Lemma 5.7, ðUX�1LX; YL�1Y �1V Þ is a positive equivalence from B to
B 0. This concludes the proof. �

6. The main results

Given an n � n matrix A, we de"ne ðI � AÞ1 to be the N � N matrix equal to
I � A in its n � n upper left-hand corner and equal to the in"nite identity outside
this block. The next theorem is our central result.

THEOREM 6.1. Let G be a �nite group, and let A and B be non-trivial
essentially irreducible matrices over ZþG such that W ðAÞ ¼ W ðBÞ ¼ G. If ðU; V Þ :
ðI �AÞ1 ! ðI � BÞ1 is an EðZGÞ-equivalence, then it is a positive ZG-equivalence.

Proof. First, we may assume that that A and B have a common size k with
only zero entries outside the upper left k� 2 � k� 2 corner (expanding a matrix
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A to a larger matrix with zero entries does not a;ect ðI � AÞ1), and consequently
the 2 � 2 identity matrix is a summand of I � A and of I �B. By Lemma 6.6
(which we defer to the end of this section), after replacing I � A and I � B with
matrices positively equivalent over ZG, we may assume that A� I is very positive
and likewise that B� I 
 0. By Lemma 5.2, ðU; V Þ : I � A! I �B is a positive
equivalence if ðU; V Þ : A� I ! B� I is a positive equivalence through Mþ
(De"nition 5.1). By Theorem 5.3, ðU; V Þ : A� I ! B� I is indeed a positive
equivalence through Mþ. �

Remark 6.2. Note, in Theorem 6.1 we not only showed that a positive
equivalence exists, but in addition we showed that every equivalence is a positive
equivalence. In the case G is trivial, this additional information proves [7, x 7]
surjectivity of a certain homomorphism to AutðcokðI �AÞÞ from the mapping
class group of the mapping torus of an irreducible non-trivial SFT SA. (For this
homomorphism, the action of a basic 5ow equivalence is multiplication by the
corresponding basic elementary matrix.) In the case G is non-trivial, our map goes
from an equivariant mapping class group to the ZG module cokðI � AÞ, and from
Theorem 6.1 we similarly know that the range in AutðcokðI � AÞÞ is the set of
automorphisms induced by EðZGÞ self equivalences of ðI � AÞ.

Remark 6.3. Suppose in Theorem 6.1 that ðI � AÞ1, ðI � BÞ1, U and V
equal I outside their upper left n � n corners. Then the proof of Theorem 6.1
shows that the factorization of ðU; V Þ into basic positive equivalences can be
achieved using only matrices which equal I outside their upper left
ðnþ 2Þ � ðnþ 2Þ corners.

THEOREM 6.4 (Classi"cation Theorem). Let G be a �nite group, and let A and
B be essentially irreducible non-trivial matrices over ZþG. For SA and SB to be
G-�ow equivalent, it is necessary that W ðAÞ ¼W ðBÞ. Now suppose W ðAÞ ¼W ðBÞ
and H is a group in this weight class. Let A and B be matrices over ZH which are
positively ZG-equivalent to A and B, respectively. (Note that A and B exist by
Proposition 4.4.) Then the following are equivalent:

(1) SA and SB are G-�ow equivalent;
(2) there exists � 2 G such that �H��1 ¼ H and there is an EðZHÞ-equivalence

from ðI �AÞ1 to ðI � �B��1Þ1.

Proof. The necessity of W ðAÞ ¼ W ðBÞ was Proposition 4.2. The implication
(1) ¼)(2) follows from Theorems 3.3 and 4.7. The implication (2) ¼)(1) follows
from Theorem 6.1. �

Theorem 6.4 reduces the G-5ow equivalence classi"cation to the problem of
classifying matrices up to EðZGÞ-equivalence, which we discuss in xx 8 and 9. The
positivity constraints on the matrices I � A that we study do not lead to a smaller
EðZGÞ-equivalence problem, because for any "nitely supported B over ZG there is
an EðZGÞ-equivalence from I � B to a matrix I � A where A is essentially
irreducible and non-trivial with weight class fGg (Proposition 8.8). We extract
now one consequence of Theorem 6.4 and the algebra. The kernel SK1ðZGÞ is
discussed in x 8.
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THEOREM 6.5. Suppose G is a �nite abelian group and A is a square
irreducible matrix over ZþG such that I �A is injective (that is, detðI � AÞ is not
a zero divisor in ZG). Then the following hold.

(1) The number of distinct G-�ow equivalence classes de�ned by matrices B
such that detðI �BÞ ¼ detðI �AÞ is �nite.

(2) If SK1ðZGÞ is trivial and detðI �BÞ ¼ detðI � AÞ, then A and B determine
the same G-�ow equivalence class if and only if they have the same weight class
and the ZG-modules cokðI � AÞ and cokðI �BÞ are isomorphic.

Proof. (1) When I �A is injective, cokðI � AÞ is "nite. Therefore (crudely)
only "nitely many isomorphism classes of cokernel modules are possible. The
conclusion now follows from the Classi"cation Theorem 6.4, Corollary 9.9, and the
"niteness of SK1ðZGÞ [26].

(2) This follows from the Classi"cation Theorem 6.4 and Proposition 9.5. �

We "nish this section with the (somewhat tedious) proof for the reduction to
very positive matrices.

LEMMA 6.6 (Very Positive Presentation). Let A be an essentially irreducible
m � m matrix over ZþG, with m> 2, such that WiðAÞ ¼ G for 16 i6m and
�ðAÞ has more than one cycle. Then there is a positive equivalence over ZG from
I � A to a matrix I � B such that �gððB� IÞði; jÞÞ > 0 for every g in G and every
entry index ði; jÞ, that is, B� I 
 0.

Proof. We adjust the matrix A sequentially without renaming it each time.
Let A be n � n, where n changes as A does. We relabel so that the irreducible
core submatrix is in the upper left-hand corner.

Step 0: diagonalizing cycles. First we describe a certain cycle-shortening
construction. Let i ¼ i0; i1; . . . ; ik ¼ i be a "nite sequence of indices corresponding
to a cycle (cyclic path of edges) C ¼ e1e2 . . . ek with weight g, where et runs from
it�1 to it and has weight gt (so g1g2 . . . gk ¼ g). We require that some intermediate
index ir is not i. We will construct a positive equivalence ðI � AÞ ! ðI � BÞ for
which we claim Aði; iÞ>Bði; iÞ þ g and also Aðt; tÞ>Bðt; tÞ for all t. The latter
part of this claim will be clear because the construction will be a composition of
forward basic positive equivalences.

First suppose the path length k satis"es k > 2. Let e denote the edge er.
(1) If r < k� 1, then produce a new matrix I � A 0 by applying the basic

positive equivalence ðEir;irþ1ðgrþ1Þ; IÞ. The A-cycle C gives rise to an A 0-cycle C 0,
which looks like C except that any esesþ1 for which es ¼ e is replaced by an edge
from is�1 ¼ ir to isþ1 with weight gsgsþ1. The cycle C 0 is still a cycle from i to i, it
still passes through an index other than i, and it has the same weight as C.

(2) If we do not have r < k� 1, then r ¼ k� 1> 2, and we may similarly apply
the basic positive equivalence ðI; Eir�1;irðgrÞÞ to shorten the cycle.

Repeating the moves above, we reach the case of path length k ¼ 2. Apply the
basic positive equivalence ðEi0;i1ðg1Þ; IÞ. We have shortened the cycle to a cycle
from i to i with the same weight. This completes the proof of the claim.

Given A, let A 00 denote the irreducible core of A, its maximal irreducible
principal submatrix.
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Step 1: non-zero trace. If A has zero trace, then diagonalize a cycle as in the
previous step to achieve non-zero trace.

Step 2: trim. Suppose that row j of A is zero and some entry Aði; jÞ 6¼ 0. Let
Aði; jÞ ¼ g1 þ . . .þ gk and set E ¼ Eijðg1 þ . . .þ gkÞ, so E ¼ Eijðg1Þ . . .EijðgkÞ.
Then EðI � AÞ ¼ ðI �BÞ where B ¼ A except for the entry Bði; jÞ ¼ 0, and
ðE; IÞ : ðI � AÞ ! ðI �BÞ is a positive equivalence. After applying such positive
equivalences, if necessary, and analogous equivalences ðE; IÞ, we may assume that
Aði; jÞ ¼ 0 unless both i and j are indices for A 00.

Step 3: core at least 2 � 2. Suppose the irreducible core A 00 is 1 � 1, say
A 00 ¼ ðAð1; 1ÞÞ. Because there is more than one cycle, we can write Að1; 1Þ ¼ gþ b
where g 2 G and 0 6¼ b 2 ZþG. Subtract g times row 2 of ðI � AÞ from row 1; then
subtract column 2 from column 1. The result of these two positive equivalences is
a matrix with b g

1 0

� �
as the irreducible core.

Step 4: very positive core diagonal. At this point we have A 00 at least 2 � 2 in
size and with an index i such that A 00ði; iÞ 6¼ 0. Pick an index j 6¼ i for A 00. Every
element of G is the weight of some cycle from i to i, so it follows by irreducibility
of A 00 that every element of G is the weight of some cycle from j to j which runs
through i. This statement remains true after we diagonalize a cycle from j to j as
in Step 0, because i and j must remain in the irreducible core, because the ii and
jj entries are non-zero and do not decrease. Consequently we can diagonalize
cycles until A 00ðt; tÞ 
 0 for every diagonal entry of A 00.

Step 5: A is a core. If 16 t6m and t is not an index for A 00: pick an index s for
A 00; subtract row t of A from row s; then subtract column t from column s. This
positive equivalence I � A! I � C produces C whose irreducible core has an
index set enlarged by ftg. Apply Step 4 again to the tt and ss entries as needed
to get all diagonal entries of C 00 
 0. Repeat until A ¼ A 00 with very
positive diagonal.

Step 6: very positive A. Suppose i 6¼ j, g 2 G and A 00ði; jÞ � g> 0. Following
Step 3, we see that ðEijðgÞ; IÞ : ðI � AÞ ! ðI � CÞ is a basic positive equivalence;
Cði; jÞ 
 0; and C>A. So, we may apply basic positive equivalences to arrive at
A 00 on an unchanged index set with A 00 
 0. �

7. Twistwise �ow equivalence

As noted in the Introduction, when G ¼ Z=2 the equivalence relation of G-5ow
equivalence is called twistwise 5ow equivalence. Let t denote the generator of Z=2,
so t2 ¼ 1. We write AðtÞ for a matrix over ZþG and let Að1Þ and Að�1Þ denote
the matrices over Z obtained from setting t to 1 and �1.

Suppose AðtÞ is given. We de"ne the ribbon set R to be a 5ow on a "ber bundle
with "ber ð�1; 1Þ over the one-dimensional suspension 5ow ðB; (Þ of Að1Þ,
associated to AðtÞ as follows. We can pass to a higher block presentation so that
we may assume AðtÞ has only 1s, 0s and ts as entries. Then there is an oriented
Markov partition D ¼ fD1; . . . ; Dkg on a cross section of F that induces Að1Þ. Let

Bij ¼ fx 2 B : x 2 (tðyÞ; y 2 Di; and (#ðyÞðyÞ 2 Dj for 06 t6 #ðyÞg;

where # is the "rst return time map for D. Let Rij ¼ Bij � ð�1; 1Þ. Attach the
non-empty Rijs so that the core is F and the gluing of the edge "bers (end points
of the Bij crossed with the "ber ð�1; 1Þ) are the identity if Aij ¼ 1 and
multiplication by �1 if Aij ¼ t. Call this set R. We place a 5ow on R that agrees
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with ( on the core B and so that all other orbits are forward asymptotic to B and
exit R in reverse time. Two matrices are twistwise 5ow equivalent if and only if
they have topologically equivalent ribbon sets. Ribbon sets are realized naturally
as stable bundles of basic sets of Smale 5ows [34].

We now de"ne the invariants of twistwise 5ow equivalence established in [34,
35, 36]. Let

T ¼ 0 1
1 0

� 	
:

If AðtÞ is k � k de"ne AðT Þ to be the 2k � 2k matrix over Zþ obtained by
converting each aþ bt entry of AðtÞ to the block

aI þ bT ¼ a b
b a

� 	
:

The determinants of the three matrices I �Að1Þ, I � Að�1Þ and I � AðT Þ were
established as invariants of twistwise 5ow equivalence, as were the isomorphism
classes of their cokernel groups. (We remark that the group cokðI �AðT ÞÞ is
isomorphic to the group obtained from the ZZ=2 module cokðI � AðtÞÞ by
forgetting the module structure.) The orientability of the ribbon set was
determined by checking the diagonal entries of AiðtÞ for i ¼ 1; . . . ; k for the ts.
The ribbon set is orientable if t appears in none of these entries, and is
non-orientable otherwise. Orientability is an invariant independent of the others;
in the setting of this paper, orientability is triviality of the weight class.

From the results of this paper, it is easy to see that the previously known
invariants were not complete. For example, none of those invariants distinguish a
matrix and its transpose, so Example 8.6 and Proposition 8.8 can be used to
produce a pair which agree on the previously known invariants but are not
twistwise 5ow equivalent. The methods and results of this paper are also useful for
establishing twistwise 5ow equivalence when it holds.

Example 7.1. Let

A ¼ 0 t
1 1

� 	
; B ¼ 1 t

1 1

� 	
and E ¼ 1 1

0 1

� 	
:

Then EðI �AÞ ¼ I �B, so by Theorem 6.4, A and B are twistwise 5ow
equivalent. This answers a question in [36, p. 9]. Here E does not give a basic
positive equivalence. However, following the philosophy of the proof of Theorem
6.1, if we let

Q1 ¼
1 0
1 1

� 	
and Q2 ¼

1 t
0 1

� 	
;

then ðI;Q1Þ, ðI;Q2Þ, ðE; IÞ, ðI;Q�12 Þ, ðI;Q�11 Þ is a sequence of basic positive
equivalences taking I � A to I � B. A

In [35] Table 2 lists some 3 � 3 matrices. Several pairs have identical invariants:
counting down, 1 & 5, 2 & 7, 4 & 13, and 17 & 18. It was unknown if they were
twistwise 5ow equivalent. We can now report that simple hand calculations show
that the matrices corresponding to these pairs are twistwise 5ow equivalent.
Section 8 includes some additional results on twistwise 5ow equivalence.
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8. EðZgÞ-equivalence

In this section, we shall give some general background on EðZGÞ-equivalence,
with some results and examples for the case G ¼ Z=2. Recall our convention
(x 2.1) that in this paper a ring means a ring with 1.

Let R be a ring. We let Eðn;RÞ denote the group of n � n elementary matrices
over R, the subgroup of GLðn;RÞ generated by basic elementary matrices.
Similarly, we let EðRÞ denote the subgroup of GLðRÞ generated by the basic
elementary matrices. The group GLðRÞ=EðRÞ is the abelian group K1ðRÞ studied
in algebraic K-theory [32]. When R is commutative (so SLðRÞ can be de"ned as
the group of invertible matrices with determinant 1), the quotient group
SLðRÞ=EðRÞ is denoted SK1ðRÞ. If G is a "nite group, then SK1ðZGÞ denotes
the kernel of the map K1ðZGÞ ! K1ðQGÞ (the de"nitions agree if G is abelian). If
G is "nite, then SK1ðZGÞ is "nite. If R is Z, or R ¼ ZG with G ¼ Z=2, then every
element of SLðRÞ is a product of basic elementary matrices, and SK1ðRÞ is trivial.
In general, though, SK1ðZGÞ is not trivial when G is a "nite group. For example,
SK1ðZGÞ is not trivial if G ¼ ðZ=pÞn with p an odd prime and n> 3. See [26] for
the characterization of the "nite abelian G with trivial SK1ðZGÞ and other
background on SK1ðZGÞ.

We will say that an n � n matrix D over Z is a Smith normal form if D is a
diagonal matrix diag(d1; d2; . . . ; dn) satisfying the following conditions: diþ1 divides
di whenever 1 < i6n and diþ1 6¼ 0; diþ1 ¼ 0 implies di ¼ 0; and di > 0 if
i > 1.(Our notation here is slightly unconventional.) It is well known that any
n � n matrix over Z is SLðn;ZÞ-equivalent to a unique Smith normal form.
Because Eðn;ZÞ ¼ SLðn;ZÞ, the Smith normal form also gives a complete
invariant of Eðn;ZÞ-equivalence.

This classi"cation extends to N � N matrices. We will say that a Smith normal
form is a matrix whose upper left corner is a "nite Smith normal form and which
otherwise equals the in"nite identity matrix. If A is an n � n square matrix over
Z, then ðI � AÞ1 is EðZÞ-equivalent to a unique Smith normal form, and this form
is the matrix whose upper left corner is the Smith normal form of In � A, and
which equals I elsewhere. (It is to make this last statement that we reversed the
usual order of diagonal elements in our de"nition of Smith normal form.) So in the
Z case, we have everything: a good normal form; a good algorithm for generating
it; a decision procedure for determining whether two matrices are equivalent;
an equivalence classi"cation given by the classi"cation of the cokernel group
(Z-module) with a little more information (sign of the determinant) to re5ect the
re"nement of GLðZÞ-equivalence by EðZÞ-equivalence; and immediate stabilization
(that is, if A and B are n � n and ðI � AÞ1 and ðI � BÞ1 are EðZÞ-equivalent,
then ðI �AÞ and ðI � BÞ are Eðn;ZÞ-equivalent).

Given G a "nite group, the results of this paper obviously lead one to ask
similarly for a classi"cation of matrices over ZG up to EðZGÞ-equivalence, when
the matrices are n � n, or equal I except in "nitely many entries. This very
natural algebraic problem is far more diBcult than in the Z case. In particular,
there is nothing so nice as the Smith normal form; even for G ¼ Z=2, a matrix
might not be equivalent over GLðZGÞ to any triangular matrix (Example 8.7), or
to its transpose (Example 8.6). The problem even of GLðZGÞ-equivalence seems
not to have been addressed directly in the algebra literature, although there are
powerful results [15] in a more general setting which point the way to substantial
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progress. In the rest of this section, we make no attempt to address the general
problem, but we do give some illustrative concrete results and examples in the
case G ¼ Z=2.

From here until Proposition 8.8, G ¼ Z=2. We write elements of ZG in the form
aþ tb, where a and b are integers and t2 ¼ 1. We will use the well-known [32, x 2.4]
embedding of ZG into Z2, < : aþ tb 7! ðaþ b; a� bÞ. One easily checks that < is a ring
monomorphism whose image is fðc; dÞ : c % d mod 2g. If we write a matrix over ZG in
the form Aþ tB (A and B over Z), then applying < entrywise gives an embedding of
matrix rings (also called <), Aþ tB 7! ðAþB;A�BÞ. Under this embedding, the
image of SLðZGÞ is fðC;DÞ 2 SLðZÞ � SLðZÞ : C % D mod 2g. We will say that a
matrix M over ZG is a Smith normal form if <ðMÞ ¼ ðC;DÞ where C and D are
Smith normal forms for Z. In this case, M is diagonal over ZG and its diagonal
entries satisfy the divisibility and zero conditions we gave above for the Z form;
the non-negativity condition is replaced by the corresponding non-negativity of
the image under <. Clearly, M can be EðZGÞ-equivalent to at most one Smith
normal form.

THEOREM 8.1 (Normal Form). Let G ¼ Z=2. Let M be an n � n matrix over
ZG. Write M ¼ Aþ Bt with A and B n � n matrices over Z. If detðAþ BÞ is
odd, then M is EðZGÞ-equivalent to a Smith normal form. This is the form
corresponding to ðC;DÞ, where C and D are the Smith normal forms for Aþ B
and A� B.

The theorem follows immediately from a more general lemma.

LEMMA 8.2. Let G ¼ Z=2. Let M be an n � n matrix over ZG and let
ðC;DÞ ¼ <ðMÞ. Suppose the mod-2 rank of C is k. Then M is Eðn;ZGÞ-equivalent
to a matrix M 0 such that <ðM 0Þ ¼ ðC 0; D 0Þ where the bottom right k � k corners
of C 0 and D 0 are Smith normal forms (equal to the bottom right corners of the
Smith normal forms for C and D) and the other entries in the last k rows and
columns are zero.

Proof. Multiplication of M by a matrix in Eðn;ZGÞ corresponds to multi-
plication of ðC;DÞ from the same side by a pair of matrices in Eðn;ZÞ � Eðn;ZÞ
which are equal mod 2. So, an equivalence M ! UMV corresponds to an
Eðn;ZÞ ¼ SLðn;ZÞ-equivalence ðC;DÞ ! ðU1CV1; U2DV2Þ where U1 � U2 and
V1 � V2 are zero mod 2. We will act on the given pair ðC;DÞ with such equivalences.
Note that the condition C % D mod 2 persists under this action.

Let ðU1; V1Þ be an Eðn;ZÞ-equivalence putting C into the Smith normal form for
Z. Apply this along with ðU2; V2Þ ¼ ðU1; V1Þ. The mod-2 rank assumption tells us
that the last k diagonal entries of C are now odd and the other entries of C are
even. The same is true of D. From here we will use equivalences with
ðU1; V1Þ ¼ ðI; V1Þ, to achieve the required form for D without disturbing the
form for C. That is, we will act on D with the even elementary matrices: matrices
in Eðn;ZÞ equal mod 2 to the identity. In particular, we may freely add even
multiples of rows and columns to other rows and columns.

We claim that such even elementary operations may be used to put D into a
form such that the all entries of the last row and column are zero except for the
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diagonal entry, which is the gcd of the entries of D. Without loss of generality, we
suppose n > 1.

Step 1. Consider the bottom row of C, row n. The last entry is odd and the rest
are even. Pick j such that Dðn; jÞ ¼ a is a non-zero entry of smallest magnitude in
row n. Add even multiples of column j to other columns to produce the condition
that every entry in row n lies in the interval ½�jaj; jaj�. If any non-zero entry b of
row n now satis"es jbj < jaj, then again add even multiples of columns to others
until all entries lie in ½�jbj; jbj�. Continue until there is some non-zero entry a such
that all entries of row n lie in the set f�jaj; 0; jajg. This number jaj must be the
gcd of the original entries of row n. Consequently jaj is odd. Since the entries of
row 1 were never changed mod n, the diagonal entry of row n must be a and the
others then must be 0.

Step 2. Apply the Step 1 idea to column n, putting it into the form ½0 . . . 0a�t (a
may have decreased).

If row n is no longer in the form ½0 . . . 0a�, then re-apply Step 1. Repeat Steps 1
and 2 as needed until both row 1 and column 1 are zero except for the odd entry
on the diagonal. Call this ‘the process’.

If jaj is not the gcd of all the matrix entries, then there is some higher row i
containing an element not divisible by a. Add twice row i to row n. Now row n
has a gcd smaller than jaj. Apply ‘the process’ again. The one non-zero entry in
row n or column n, on the diagonal, has decreased in magnitude. Finitely many
iterations therefore produce the diagonal entry a such that jaj is the gcd of the
matrix entries. Finally, if necessary after multiplying the last row and a higher
row both by �1 (this corresponds to multiplying by a determinant 1 matrix which
equals I mod 2), we can assume a > 0. This "nishes the proof of the claim.

Repeat this procedure on successive submatrices until a matrix is produced
which satis"es the statement of the theorem. If k ¼ n, then at the "nal step there
will not be a ‘higher row’ and there will not be freedom to adjust the sign of the
diagonal entry: it must equal the sign of the determinant. �

Remark 8.3. The lemma shows that Theorem 8.1 is true under the weaker
assumption that at most one entry of the Smith form for Aþ B is even, because
in this case the algorithm of the lemma produces a matrix which is equivalent to
A� B and which must be a Smith normal form.

COROLLARY 8.4. Let G ¼ Z=2. If M ¼ Aþ tB where A and B are square
integral matrices with detðAþBÞ odd, then M is EðZGÞ-equivalent to its
transpose.

Remark 8.5. Equivalence to the transpose gives rise to an interpretation of
G-5ow equivalence to the time-reversed 5ow as in [14]. Because irreducible
matrices over Z are equivalent to diagonal matrices, Franks could include the fact
that the mapping torus 5ows of irreducible shifts of "nite type are 5ow equivalent
to their time-reversed 5ows. For G-5ow equivalence with G non-trivial, this holds
in some cases (for example, Corollary 8.4) but not in general, as the next
example shows.

Example 8.6. For G ¼ Z=2, there is a matrix M over ZG which is not
GLðZGÞ-equivalent to its transpose.
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Proof. We will give a 2 � 2 example M. (It is not diBcult to verify for this
example that M � I, where I is the in"nite identity matrix, is also not GLðZGÞ-
equivalent to its transpose.) De"ne M, and consequently <ðMÞ ¼ 2ðC;DÞ, as
follows:

M ¼ 1 1
0 2

� 	
þ t

1 �1
0 2

� 	
; C ¼ 1 0

0 2

� 	
; D ¼ 0 1

0 0

� 	
:

To show that M is not equivalent to its transpose, we suppose there are GLðZÞ
matrices U1, U2, V1 and V2 such that U1 % U2 mod 2, V1 % V2 mod 2, U1CV1 ¼ C
and U2DV2 ¼ Dt, and then "nd a contradiction. First consider the equivalence
C ¼ U1CV1:

1 0
0 2

� 	
¼ a b

c d

� 	
1 0
0 2

� 	
� =
� <

� 	
¼ a�þ 2b� a= þ 2b<

c�þ 2d� c= þ 2d<

� 	
:

We see that a and � must be odd, and then also that c and = must be even, and
then because the determinants of U1 and V1 are odd that d and < must be odd. So
we have

U1 ¼
1 !
0 1

� 	
mod 2 and V1 ¼

1 0
! 1

� 	
mod 2;

with ! indicating an entry which is not speci"ed mod 2. Consequently, mod 2 we
have

U2DV2 ¼ U1DV1 ¼
1 !
0 1

� 	
0 1
0 0

� 	
1 0
! 1

� 	
¼ ! 1

0 0

� 	
6¼ Dt:

This contradiction "nishes the proof. �

Example 8.7. Let G ¼ Z=2. There is a matrix M over ZG such that M is
not GLðZGÞ-equivalent to a triangular matrix. In particular, M is not equivalent
to a Smith normal form.

Proof. We will give a 2 � 2 example M. (It is not diBcult to verify for this
example that M � I, where I is the in"nite identity matrix, is also not equivalent
to a triangular matrix.) Set

M ¼ 1 1
1 2

� 	
þ t

1 �1
�1 0

� 	

so that <ðMÞ ¼ 2ðI;DÞ where D ¼ 0 1
1 1

� �
: Suppose M 0 is upper triangular and

GLðZGÞ-equivalent to M. Then <ðM 0Þ ¼ 2ðC 0; D 0Þ for some matrices C 0 and D 0

over Z which are upper triangular. Here C 0 must be GLðZÞ-equivalent to I, so its
diagonal entries must be &1. Let U be a matrix which acts to add a multiple of
row 2 to row 1, such that UC 0 is diagonal. Let W be a diagonal matrix with
diagonal entries from f1;�1g such that WUC 0 ¼ I. Note WUD 0 is upper
triangular. Replace ðC 0; D 0Þ with ðWUC 0;WUD 0Þ. At this point we have 2ðI;DÞ
equivalent to some 2ðI;D 00Þ where D 00 is upper triangular. So, there are GLð2;ZÞ
matrices U1 % U2 mod 2 and V1 % V2 mod 2 such that U1ð2IÞV1 ¼ 2I and
U2ð2D 00ÞV2 ¼ 2D. Now V1 must equal ðU1Þ�1 and therefore mod 2 we have D
similar to a triangular matrix. This is impossible because the characteristic
polynomial of D considered over the "eld Z=2 is irreducible. �
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We "nish with the proposition mentioned in x 6.

PROPOSITION 8.8. Suppose G is a �nite group, and B is a �nitely supported
N � N matrix over ZG. Then I � B is EðZGÞ-equivalent to some matrix ðI � AÞ1
over ZþG, where A has weight class fGg and A
 0.

Proof. Suppose B is zero outside its upper left n � n corner. Let y denote the
sum of all elements in G and let m be a positive integer. Subtract my times row
nþ 1 from the rows 1; 2; . . . ; n. Then add column nþ 1 to the columns 1; 2; . . . ; n.
Finally, add row 1 to row nþ 1. If m is suBciently large, we get a matrix I � C
for which C is zero except in the upper left ðnþ 1Þ � ðnþ 1Þ corner, where
every entry of C is greater than y. Let A be the upper left ðnþ 1Þ � ðnþ 1Þ
corner of C. �

9. EðZgÞ-equivalence of injective matrices

Recall that if C is an n � n matrix, then C1 denotes the N � N matrix whose
upper left corner is C and which otherwise is equal to the in"nite identity matrix.
We begin with an easy application of a theorem of Fitting [13]. Recall our
convention (x 2.1) that in this paper a ring means a ring with 1.

LEMMA 9.1. Suppose R is a ring, and C and D are injective square matrices
over R. Then the following are equivalent.

(1) There exist V 2 EðRÞ and U 2 GLðRÞ such that UC1V ¼ D1.
(2) The R-modules cokðCÞ and cokðDÞ are isomorphic.

Proof. We will prove the non-trivial implication, which is (2) ¼)(1). Let
matrices act on row vectors. Suppose C and D are m � m and n � n, respectively.
Let, for example, In denote the n � n identity matrix. Because C and D have
isomorphic cokernels, there is an invertible matrix V1 such that the matrices

C 0
0 Im

� 	
V1 and

In 0
0 D

� 	
ð9:2Þ

have the same image. For this claim we refer to War"eld’s modern (and English)
presentation [38, p. 1816] of Fitting’s result; it is evident from the proof that the
matrix V1 can be chosen from Eðmþ n;RÞ.

Because the displayed matrices are injective with equal image, obviously [13, 38]
there exists an invertible matrix U1 such that

U1
C 0
0 Im

� 	
V1 ¼

In 0
0 D

� 	
:

Finally, let E be a matrix in Eðmþ n;RÞ such that

E�1
In 0
0 D

� 	
E ¼ D 0

0 In

� 	

and set U ¼ ðEU1Þ1 and V ¼ ðV1E
�1Þ1. �

Remark 9.3 [38, p. 1823]. For a certain "nite group G (the generalized
quaternion group of order 32), Swan [37, p. 57] found an ideal P , not free as a ZG
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module, but still with module isomorphisms ZG� ZG ffi P � P ffi ZG� P . This
yields 2 � 2 matrices over ZG with isomorphic cokernels but non-isomorphic
kernels. Therefore Lemma 9.1 would be false without the hypothesis of injectivity.

Remark 9.4. An imperfection of Fitting’s general result is that the size of the
identity summands in (9.2) depends on the matrices C and D. However, if d is a
positive integer in the stable range (de"ned below) of the ring R, then those
summands Im and In can be chosen with m ¼ n ¼ d, and under some additional
conditions on R (for example if R is commutative) this bound can be lowered to
d� 1 [38, pp. 1822--1823]. When G is a "nite group, the Krull dimension (see [25,
Chapter 6] for the de"nition for a ring that is not necessarily commutative) of the
Noetherian ring ZG is 1 [25, Proposition 6.5.5, p. 211], and consequently 2 is in
(and is then easily seen to be the minimum integer in) the stable range of ZG [25,
Theorem 6.7.3, p. 220].

To de"ne stable range, say that a row vector ða1; . . . ; anÞ over R is a right
unimodular row if there are elements xi 2 R, for 16 i6n, with

P
i aixi ¼ 1. The

stable range of R is the set of positive integers d such that for any right unimodular
row ða1; . . . ; anÞ with n > d, there exist elements bi 2 R, with 16 i6n� 1, such
that the row ða1 þ anb1; . . . ; an�1 þ anbn�1Þ is again right unimodular.

We pause to isolate for later use a particularly simple statement.

PROPOSITION 9.5. Suppose R is a commutative ring; SK1ðRÞ is trivial; C and
D are �nite square matrices over R; and C is injective. Then the following are
equivalent:

(1) there exist U and V in EðRÞ such that UC1V ¼ D1;
(2) detðCÞ ¼ detðDÞ and the R-modules cokðCÞ and cokðDÞ are isomorphic.

Proof. We check the non-trivial implication, (2) ¼)(1). By Lemma 9.1, we
have matrices U and V such that UC1V ¼ D1 with V 2 EðRÞ. Because
detðV Þ ¼ 1 and detðDÞ ¼ detðCÞ 6¼ 0, we have also detðUÞ ¼ 1. Because SK1ðRÞ
is trivial, it follows that U and V are in EðRÞ. �

Now we want to observe that injective matrices with a given cokernel
isomorphism class are classi"ed up to elementary equivalence by a quotient of K1.

PROPOSITION 9.6. Let R be a ring. Let C be the set of all square injective
matrices over R with cokernel module isomorphic to that of a given square
injective matrix over R. Let EðCÞ be the partition of C such that C and D are in
the same element of EðCÞ if C1 and D1 are EðRÞ-equivalent. Then there is a
subgroup H of K1ðRÞ such that the following hold.

(1) For any C and D in C, if ðU; V Þ is a GLðRÞ-equivalence from C1 to D1,
that is, UC1V ¼ D1, then there exists an elementary equivalence from C1 to D1
if and only if ½UV � 2 H.

(2) For any C 2 C, the map GLðRÞ ! C de�ned by U 7!UC1 induces a well-
de�ned bijection ðK1ðRÞÞ=H ! EðCÞ.

(3) If R is commutative, or if R ¼ ZG with G �nite, then H � SK1ðRÞ.
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Proof. We write C � D if there is an elementary equivalence from C to D. If
U is in GLðn;RÞ, then it is well known that the matrix U 0

0 U�1

� �
is in Eð2n;RÞ, and

therefore that, for any n � n matrix C over R,

UC 0
0 I

� 	
� U�1 0

0 U

� 	
UC 0
0 I

� 	
U 0
0 U�1

� 	
� CU 0

0 I

� 	
:

We will use this simple fact repeatedly. From here, we suppress the subscript 1
and consider all matrices in"nite. We let U and V denote elements of GLðRÞ.
Note that if C � D, then CU � DU and UC � UD, and in particular
UðCV Þ � UðVCÞ. Also, UðVCÞ � UðCV Þ ¼ ðUCÞV � V ðUCÞ. Thus UVC � VUC
and similarly CUV � CVU .

Choose a matrix C in C and de"ne HC to be the set of U in GLðRÞ such
that UC � C (or equivalently CU � C). If UC � C and VC � C then
UðVCÞ � UðCÞ � C, and similarly U�1ðCÞ � U�1ðUCÞ ¼ C. Therefore HC is a
group. We claim that UCV � C if and only if UV 2 HC . If UV 2 HC , then
UCV � UVC � C. Conversely, if UCV � C, then C � UCV � UVC and thus
UV 2 HC .

Next suppose that D is another element of C. We claim that HC ¼ HD. Suppose
UDV � D. By Lemma 9.1 there are X and Y in GLðRÞ such that D ¼ XCY .
Thus XCY � UXCYV � XUCVY , so UCV � C and UV 2 HC . Similarly, UV 2 HC

implies UDV � D. This shows that the group HC does not depend on the choice
of C from C.

Notice that HC contains the commutator of GLðRÞ, since

UVCU�1V �1 � VUCU�1V �1 � C:

The commutator is the kernel of the map GLðRÞ ! K1ðRÞ. De"ne H as the image
of HC in K1ðRÞ. It follows that ½U � 2 H if and only if U 2 HC . This proves (1). It
then follows that in (2) we have a well-de"ned injection ðK1ðRÞÞ=H ! EðCÞ,
which is surjective by Lemma 9.1.

To prove (3), suppose ½U � 2 H. Perhaps after passing to another representative
of ½U �, we have E 2 EðRÞ such that UC ¼ CE. If R is commutative, the
injectivity of C forces detðUÞ ¼ 1, that is, ½U� 2 SK1ðRÞ. Suppose now that
R ¼ ZG with G "nite. Let U , C and E denote the images of U , C and E under
the map induced by the inclusion ZG! QG. The injectivity of C implies that C
is invertible. Now ðCÞ�1UC ¼ E, which implies that U and E are EðQGÞ-
equivalent. In other words, ½U � is in the kernel of the induced map
K1ðZGÞ ! K1ðQGÞ, and ½U� 2 SK1ðRÞ. �

Remark 9.7. In the case of ZG with G not abelian, we thank Jonathan
Rosenberg (personal communication 2004) for the statement and proof of part (3)
of Proposition 9.6.

Remark 9.8. In Proposition 9.6, if C contains an element of GLðRÞ, then
clearly the group H is trivial. We do not know whether it is possible for H to be
non-trivial.

Our main interest in the next result is the case R ¼ ZG, where G is "nite
(so, SK1ðZGÞ is "nite [26]) and abelian. In this case, it is straightforward to check
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whether a square matrix C over ZG is injective (examine the matrix for the
regular representation or equivalently check whether detðCÞ is a zero divisor in
ZG). Also in this case, the ZG module cokðCÞ is "nite if and only if C is injective.

COROLLARY 9.9. Suppose R is a commutative ring and SK1ðRÞ is �nite.
Suppose D1; . . . ; Dk are �nite square matrices over R such that

(1) the modules cokðDiÞ are isomorphic;
(2) the determinants detðDiÞ are equal and are not equal to a zero divisor in
R; and

(3) for i 6¼ j, there is no EðRÞ-equivalence from ðDiÞ1 to ðDjÞ1.
Then k6 jSK1ðRÞj.

Remark 9.10. Let G be a subgroup of the positive reals under multiplication,
and letA be a "nite square matrixAwith entries in ZþG, with �ðAÞ irreducible. Then
A presents the shift of "nite type )�ðAÞ together with an invariant Markov measure,
>A [24, 31]. Let B be another such matrix, and (after the normalizations described
in [24]), suppose that I � A and I �B have equal determinant, and that G is the
common group of weights over periodic cycles for >A and >B. Then [24, 29, 31]
there is a measure-preserving topological conjugacy ð)�ðAÞ; >AÞ ! ð)�ðBÞ; >BÞ if and
only if A and B are strong shift equivalent over ZþG, which is so if and only if (by
[9, Theorem 7.2]) there is a positive equivalence of polynomial matrices from
I � tA to I � tB. In this case (after setting t ¼ 1), we get matrices U and V in
EðZGÞ such that UðI � AÞ1V ¼ ðI � BÞ1. (In fact, this elementary equivalence
class of I � A is also an invariant of stochastic �ow equivalence [2].) Bill Parry
(personal communication 2001) has asked if the cokernel module of ðI � AÞ is a
complete invariant of equivalence over ZG when detðI � AÞ is non-zero. The next
result, which follows immediately from Proposition 9.5, answers this question in
the aBrmative.

PROPOSITION 9.11. Suppose R ¼ ZG where G ffi Zn and A and B are �nite
square matrices over R and detðI � AÞ is non-zero. The following are equivalent:

(1) there exist U; V in EðRÞ such that UðI � AÞ1V ¼ ðI � BÞ1;
(2) detðI � AÞ ¼ detðI � BÞ and the R-modules cokðI � AÞ and cokðI �BÞ

are isomorphic.

Proof. For any commutative ring R, the units group R! of R is a direct
summand of K1ðRÞ. The projection from K1ðRÞ to R! is given by det, and the
complementary summand is SK1ðRÞ. Let G ¼ Zn, and let U denote the set of
‘obvious’ units of ZG, U ¼ f&g : g 2 Gg. Then the det map on K1ðZGÞ is an
isomorphism to ðZGÞ!, and moreover ðZGÞ! ¼ U [3]. (The statement of the
relevant Corollary in [3, p. 63] shows that K1ðZGÞ ffi Z=2� Zn. Because
U ffi Z=2� Zn, it follows here that det is injective. That ðZGÞ! ¼ U follows from
the construction of the isomorphism proving the Corollary.) Because SK1ðZGÞ is
trivial, Proposition 9.11 follows from Proposition 9.5. �
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