
TWISTWISE FLOW EQUIVALENCE AND BEYOND ...MICHAEL C. SULLIVANWITH AN APPENDIX ON ALMOST FLOW EQUIVALENCE JOINTLY WITHMIKE BOYLEAbstra
t. We survey re
ent results in 
lassifying embeddings ofsuspensions of shifts of �nite type as hyperboli
 basi
 sets of 
owsup to twistwise 
ow equivalen
e. The problem has been redu
edto matrix equivalen
e over SL(ZZ=2). But more is true: G-
owequivalen
e of G-SFTs, for any �nite group G is has a similaralgebrai
 formalization. The appendix proves a new result: allnontrivial faithful irredu
ible G-SFTs are almost 
ow equivalent.1. introdu
tionSquare matri
es of nonnegative integers are 
ow equivalent if thesuspensions of their 
orresponding shifts of �nite type (SFTs) are topo-logi
ally equivalent. (De�nitions are in Se
tion 2.) A 
omplete set ofeasily 
omputed invariants determines 
ow equivalen
e of nontrivialirredu
ible square nonnegative matri
es [PS, BF, F2℄. When the as-sumption of irredu
ibility is dropped the 
lassi�
ation of matri
es up to
ow equivalen
e be
omes harder but has been solved; see [H1, H2, H3℄or [H4, BH℄.In [Su2℄ the 
on
ept of twistwise 
ow equivalen
e was introdu
edto des
ribe the orientability of the stable manifolds of the orbits of asuspended and embedded SFT. The twist matri
es are square matri
esover the semi-group ringZ+Z=2 = fa+ bt j a& b are nonnegative integersg mod t2 = 1:Several 
omputable invariants of twistwise 
ow equivalen
e were dis
ov-ered [Su2, Su3, Su4℄, but their 
ompleteness was unknown and seemedunlikely. In a paper by this author with Mike Boyle [BS℄ a 
ompleteDate: January 21, 2005.2000 Mathemati
s Subje
t Classi�
ation. Primary: 37B10; Se
ondary: 15A21,19B28, 19M05, 20C05, 37D20, 37C80.Key words and phrases. 
ow equivalen
e, almost 
ow equivalen
e, shift of �nitetype, skew produ
t, equivariant, K-theory, matrix equivalen
e, group ring, Smale
ows, Markov. 1



2 SULLIVANalgebrai
 invariant has been found, but it is unknown if it is 
om-putable { results in [BS℄ are more general, hen
e the \beyond" in ourtitle. This paper surveys these developments. It derives from a seriesof three le
tures given to a graduate student seminar at the Universityof Maryland in Fall 2002, and again to the Dynami
s Seminar at theUniversity of North Texas in Spring 2003. The appendix 
ontains anew result and is joint work with Boyle, who also made many helpfulsuggestions on a draft of the main body this paper.2. symboli
 dynami
sA shift of �nite type (SFT) is determined by a square matrix over thenonnegative integers Z+ by way of a dire
ted graph. IfM is n�nmatrixover Z+, we 
onstru
t a graph GM with n verti
es and Mij dire
tededges from vertex i to vertex j. Denote the edges EM = fe1; :::; ekg(k is the sum of entries of M). Let XM be the set of all bi-in�nitesequen
e from EM that 
an be realized by paths in the graph GM . Theshift map � : XM ! XM is de�ned by �(x)i = xi+1. We think of it astaking a step along an path in the graph. A shift of �nite type is thesequen
e set with its shift map.The sequen
e set XM is assigned a topology by taking the subsettopology of the produ
t spa
e ZEM . The shift map is then a homeo-morphism.Example 2.1. LetM = �1 10 2�. Label the edges as in Figure 1. Thenx = :::aaaa:b


::: is in XM . Here the dot or \de
imal point" tells usthat x0 = b. Find all the �xed points of �. Find all the points of leastperiod two, that is the �xed points of � Æ � that are not �xed points of�.PSfrag repla
ementsa b 
 dFigure 1. Graph for Example 2.1De�nition 2.2. A square matrix M over Z is irredu
ible if for everyi; j whi
h indexes an entry of M there is an n su
h that (Mn)ij 6= 0.An SFT whi
h is generated by an irredu
ible matrix is also 
alledirredu
ible.



TWISTWISE FLOW EQUIVALENCE 3Readers should 
onvin
e themselves that in the graph of an irre-du
ible matrix over Z+ there is a path from ea
h vertex to every othervertex. Thus, the matrix in Example 2.1 is redu
ible (i.e. not irre-du
ible). An SFT is trivial if it 
onsists of a �nite number of periodi
orbits. In this 
ases any in
iden
e matrix will be a permutation matrix.We will work mostly with nontrivial irredu
ible SFTs. These 
an beshown to be Cantor sets.De�nition 2.3 (Topologi
al Conjuga
y). Given two SFT (Xi; �i),i = 1; 2, we say they are topologi
ally 
onjugate if there exists a home-omorphism h : X1 ! X2 su
h that h Æ �1 = �2 Æ h.It is easy to 
he
k that a topologi
al 
onjuga
y takes periodi
 orbitsto periodi
 orbits, preserving the least period.De�nition 2.4 (Strong Shift Equavalen
e). Let A and B be squarematri
es over Z+. An SSE-move from A to B is a dual de
ompositionA = RS, B = SR, where R and S are over Z+, but need not be square.We say A an B are strong shift equivalent if there is a �nite 
hain ofSSE-moves taking A to B.It is not yet known if strong shift equivalen
e is de
idable. But manyreadily 
omputable invariants are unknown. The theorem below is dueto R.F. Williams [Wi℄.Theorem 2.5 (Fundamental Theorem of SFTs). Let A and B besquare matri
es over Z+. Then XA is topologi
ally 
onjugate to XBif and only if A is strong shift equivalent to B.Example 2.6. Let A = �1 11 1� and B = [2℄. Then A = �11� �1 1�while B = �1 1� �11�. Let's 
onstru
t a topologi
al 
onjuga
y fromXAto XB. We use the edge and vertex names shown in Figure 2. De�neh : XA ! XB by letting the i-th 
oordinate of y = h(x) be e if theedges xi and xi+1 have, respe
tively, �nal and initial vertex 1, and bef otherwise. For example::::aab
b
aab:dddddd::: 7! :::eefefeeef:fffff::::The reader should 
onstru
t the inverse. For the proof of 
ontinuitysee [LM℄.



4 SULLIVANPSfrag repla
ements
a b
 d e f1 2Figure 2. These SFTs are toplogi
ally equivalent.3. Flow Equivalen
eLet A be a square matrix over Z+. Let (X; �) be the SFT indu
edby A. Let (F; �t) be de�ned byF = X � R=(x; t + 1) � (�(x); t);and �t([x; s℄) = [x; s+ t℄:The pair (F; �t) is 
alled the mapping torus or the suspension 
ow of(X; �). For more details see [LM, x13.6℄.De�nition 3.1 (Flow Equivalen
e). Two suspension 
ows (FA; �t) and(FB;  t) are topologi
ally equivalent if there exists a homeomorphismfrom FA to FB taking 
ow lines to 
ow lines while preserving the 
owdire
tion. We say two SFTs are 
ow equivalent (FE) if their suspensionsare topologi
ally equivalent. We also de�ne two square matri
es overZ+ to be FE if their indu
ed SFTs are FE.Example 3.2. The matri
es �0 11 0� and [1℄ are FE. Their SFTs ea
h
onsists of a single orbit. Noti
e these are not SSE.For permutation matri
es FE is determined by just 
ounting thenumber of 
losed orbits. Sin
e permutation matri
es indu
e su
h simpleSFTs they are often 
alled trivial matri
es.Example 3.3. The matri
es �1 11 1� and [2℄ are FE sin
e they are SSE{ think about this. FE is a 
oarser equivalen
e relation than SSE.Example 3.4. The matri
es A = �1 11 1� and B = 240 1 01 0 11 0 135 are FE.See Figure 3. Every path that goes through vertex 1 in the graph forA 
orresponds to a path in the graph for B that goes through 10 �rst.



TWISTWISE FLOW EQUIVALENCE 5We de�ne a map from XA to XB by repla
ing ea
h o

urren
e of a and
 in a member if XA by ae and 
e, respe
tively. Thus,:::aaaaa:aaaa:::: 7! ::::aeaeaeae:aeaeaeae::::and, ::::aabdd
:b
aabd:::: 7! ::::aeaebdd
e:b
eaeaebd:::This is 
learly not a topologi
al 
onjuga
y sin
e a �xed point is takento a point with least period two. The proof that it indu
es a topologi
alequivalen
e of FA and FB is given in [PS℄, where 
ow equivalen
e was�rst de�ned. But, the essential idea 
an be seen in Figure 4. Thematrix A 
an be re
overed from FA as the in
iden
e matrix for a 
rossse
tion partitioned into two pie
es, 1 & 2. If we add a third partitionmember 10 to this 
ross se
tion that is parallel to but just before 1, weget the matrix B as an in
iden
e matrix. Thus, heuristi
ally, it seemsA and B should be FE. (The partitions are more properly referred toas Markov partitions; a pre
ise de�nition 
an be found in [PS℄ or mostdynami
al systems textbooks.)
1 2

1

2

PSfrag repla
ements aa bb 

 dd e10Figure 3. FE GraphsPSfrag repla
ements 11 22 10Figure 4. Di�erent 
ross se
tions, same 
ows.De�nition 3.5. A PS-move of a matrix A is de�ned by24a11 a12 � � �a21 a22 � � �... ... 35 7! 2664 0 1 0 � � �a11 0 a12 � � �a21 0 a22 � � �... ... ... 3775 ;



6 SULLIVANor the inverse of this.Theorem 3.6 (Parry & Sullivan [PS℄). The matrix moves SSE andPS generate FE. That is any FE between matri
es 
an be realized by a�nite 
hain of SEE and PS moves.Invariants 3.7. For A an n� n matrix over Z de�nePS(A) = det(I � A) (The Parry-Sullivan Number)and, BF (A) = Zn(I � A)Zn : (The Bowen-Franks Group)These are invariants of FE; see [PS, BF℄, respe
tively.The Bowen-Franks group of a SFT is a �nitely generated Abeliangroup. Any n�n integral matrixM de�nes a �nitely generated Abeliangroup via ZnMZn. It 
an be determined if two su
h groups are isomorphi
by examining their Smith normal forms. There is a standard algorithmtaking a matrix to its Smith normal form (see any graduate algebratext).Remark 3.8. jBF j = jPSj, unless PS = 0, in whi
h 
ase jBF j =1.Theorem 3.9 (Franks [F2℄). PS and BF are a 
omplete set of invari-ants for FE of nontrivial irredu
ible square matri
es over Z+.4. Appli
ation to Templates for Smale FlowsA C1 
ow �t on a 
ompa
t manifold M is 
alled stru
turally stableif any suÆ
iently 
lose approximation  t in the C1 topology is topo-logi
ally equivalent. Stru
turally stable C1 
ows have a hyperboli
stru
ture on their 
hain-re
urrent sets [Hu℄. We de�ne these 
on
eptsnext.A point x 2 M is 
hain-re
urrent for �t if for every � > 0 andT > 0 there exists a 
hain of points x = x0; : : : ; xn = x in M , and realnumbers t0; : : : ; tn�1 all bigger than T su
h that d(�ti(xi); xi+1) < �when ever 0 � i � n � 1. The set of all su
h points is 
alled the
hain-re
urrent set R. It is a 
ompa
t set invariant under the 
ow.A 
ompa
t invariant set K for a 
ow �t has a hyperboli
 stru
ture ifthe tangent bundle of K is the Whitney sum of three bundles Es, Eu,and E
 ea
h of whi
h invariant under D�t for all t. Furthermore, theve
tor �eld tangent to �t spans E
 and there exist real numbers C > 0and � > 0 su
h thatkD�t(v)k � Ce��tkvk for t � 0 and v 2 Es;



TWISTWISE FLOW EQUIVALENCE 7kD�t(v)k � Ce�tkvk for t � 0 and v 2 Eu:We also de�ne the lo
al stable and unstable manifolds asso
iated toan orbit O. They are respe
tively,W slo
(O) = [x2Ofy 2M jd(�t(x); �t(y))! 0 as t!1 and d(�t(x); �t(y)) � � for t � 0gandW ulo
(O) = [x2Ofy 2M jd(�t(x); �t(y))! 0 as t! �1 and d(�t(x); �t(y)) � � for t � 0g:The global stable and unstable manifolds are de�ned by removing the
ondition that d(�t(x); �t(y)) � �.It was shown by Smale [Sm℄ that if the 
hain-re
urrent set R of 
owhas a hyperboli
 stru
ture then R is the union of a �nite 
olle
tion ofdisjoint invariant 
ompa
t sets he dubbed the basi
 sets. Ea
h basi
set B 
ontains an orbit whose 
losure is B. The periodi
 orbits of abasi
 set B are dense in B.De�nition 4.1. A 
ow �t on a manifold M is 
alled a Smale 
owprovided(a) the 
hain-re
urrent set R of �t has a hyperboli
 stru
ture,(b) the basi
 sets of R are one-dimensional, and(
) the stable manifold of any orbit inR has transversal interse
tionwith the unstable manifold of any other orbit of R.Some referen
es allow for zero-dimensional basi
 sets in the de�nitionof Smale 
ows but we will be working with nonsingular 
ows, 
owswithout rest points. Smale 
ows on 
ompa
t manifolds are stru
turallystable under C1 perturbations but are not dense in the spa
e of C1
ows. For dim M = 3 a basi
 set of a Smale 
ow either 
onsists ofa single 
losed orbit or it is the suspension of an irredu
ible SFT. Anontrivial basi
 set is said to be 
haoti
. It is easy to see that ea
hattra
ting and repelling basi
 set is a 
losed orbit. The saddle sets maybe 
haoti
.For a 
haoti
 saddle set of a Smale 
ow in a 3-manifold one 
an
onstru
t a neighborhood that is foliated by lo
al stable manifoldsof orbits in the 
ow. Collapsing in the stable dire
tion produ
es abran
hed 2-manifold. With a semi-
ow indu
ed from the original 
ow,this bran
hed 2-manifold is known as a template. The template modelsthe basi
 saddle set in that the saddle set itself 
an be re
overed fromthe template via an inverse limit pro
ess and that any knot or link of
losed orbits in the saddle set 
ow is smoothly isotopi
 to an equivalentknot or link of 
losed orbits in the template's semi-
ow. The proof of



8 SULLIVANthis is due to Birman and Williams [BiWi℄ and 
an also be found in[GHS, Theorem 2.2.4℄. Figure 5 shows two templates, the one on theleft is know as the Lorenz template and the one on the right arises forthe suspension of the Smale horseshoe map.
Figure 5. Lorenz and Smale Horseshoe TemplatesThe symboli
 dynami
s 
an be re
overed from a template by 
on-stru
ting a Markov partition and dedu
ing an in
iden
e matrix of the�rst return map. For the two templates in Figure 5 an obvious 
hoi
efor the partition is a pair of line segments where ea
h segment 
utsa
ross one of the two bands. The matrix in ea
h 
ase is �1 11 1�. Andso the Lorenz and Horseshoe templates are ea
h derived from suspen-sions of the full 2-shift. Thus, their inverse limits are 
ow equivalent.But, these two templates look di�erent and I found it bothersome thatstandard symboli
 dynami
s did not distinguish them. It was this nag-ging sense that these two templates should be di�erent that lead to thedevelopments des
ribed below.To 
apture the twisting in the bands we modify the in
iden
e matrixby using the symbol tp to 
ount the twisting as an orbit goes frompartition element i to j. For the Lorenz and Horseshoe templatesthis produ
es �t2 t2t2 t2� and �t2 t2t3 t3� respe
tively. Now at least thematri
es are di�erent. We use these to de�ne a type of zeta fun
tion.For a shift map � the zeta fun
tion is��(t) = exp 1Xm=1 1mNmtm! ;where Nm is the 
ardinality of the �xed point set of �m, the m-thiterate of �. If its in
iden
e matrix over Z+ is A then a standard result[Sh℄ gives that ��(t) = 1det(I � tA) :



TWISTWISE FLOW EQUIVALENCE 9If we let A = A(t) be twist matrix for a template and set�A(t) = 1det(I � A(t)) ;we get a zeta-like fun
tion that tra
ks periodi
 orbits by the amount oftwisting. The formal de�nition of �A is given in [Su1℄. There are someimportant 
aveats. The de�nition of twisting is not the standard oneused in knot theory, and �A fails to to be well-de�ned all the 
rossingsin the template are of the same type. And �A is not an invariant of 
owequivalen
e. All these problems are 
ir
umvented in the next se
tionby rede�ning twist matri
es mod t2 = 1.5. Twistwise Flow Equivalen
eLet G = h t j t2 = 1 i �= Z=2. Given a matrix A(t) over Z+G (a twistmatrix) we de�ne the ribbon set R of A(t) to be a 
ertain �ber bundleover the suspension 
ow (F; �) of A(1). The �ber will be the interval(�1; 1). Without loss of generality we 
an assume A(t) has only ones,tees, and zeros, sin
e A(t) is SSE to su
h a matrix [F1℄. Then pla
e anoriented Markov partition fd1; : : : ; dkg on a 
ross se
tion of F whi
hindu
es A(1) as its in
iden
e matrix. For y in any di let �(y) be the�rst return time for y. LetFij = fx 2 F jx 2 �t(y);where y is su
h that y 2 di &��(y)(y) 2 dj; and 0 � t � �(y)g:In words, Fij is the union of segments of 
ow lines from di to dj. SomeFij may be empty. Let Rij = Fij�(�1; 1). Atta
h the Rij's so that the
ore is F and the gluings of the end �bers are identity maps if Aij = 1and multipli
ations by �1 if Aij = t. Call this set R. We 
an pla
e a
ow on R that agrees with F at is 
ore and has 
ow lines 
onvergingto the 
ore elsewhere, as in Figure 6. This is the ribbon set for A(t); it
an be shown to be independent of the 
hoi
e of Markov partition.
Figure 6. Flow on a 
hart of the ribbon set.For a given 
haoti
 saddle set of a Smale 
ow on a 3-manifold, the rib-bon set is topologi
ally equivalent to the stable portion of the tangent



10 SULLIVANbundle. (In [Su4℄ it was mistakenly 
onfounded with a lo
al stablemanifold. But, ribbon sets 
an be thought of as in�nitesimal stablemanifolds.)De�nition 5.1. Two twist matri
es are twistwise 
ow equivalent ifthey have topologi
ally equivalent ribbon sets.Notation: Let T = �0 11 0�. If A(t) is n� n, let A(T ) be the 2n� 2nmatrix over Z+ formed by repla
ing ea
h entry aij + bijt of A(t) with�aij bijbij aij�. Then A(T ) is the in
iden
e matrix for the SFT de�ned bypla
ing a 
ow on the boundary of the ribbon set of FA(t) and using thesame Markov partition. The 
ow FA(T ) is a double 
over of FA(1) thatre
ords the \twisting" give by A(t).Invariants 5.2. The following are invariants of twistwise 
ow equiva-len
e.� PS�(A(t)) = PS(A(�1)).� BF�(A(t)) = BF (A(�1)).� BF �(A(t)) = BF (A(T )).� O(A(t)) equals \orientable" if tr (Ak(t)) has no tees for all k,and equals \nonorientable" otherwise.These where established in [Su2, Su3, Su4℄. It is easy to show thatO(A(t)) 
an be found by 
he
king the tra
e of A(t)n for t's for only a�nite number of powers. For example O(�1 tt 1�) = orientable. A moresophisti
ated view of O(A) will be given in Se
tion 6.Example 5.3. Let A = �1 11 1� and B = �t 11 1�. Then for bothmatri
es PS� = �1 and all the Bowen-Franks groups are trivial. Butthey are distinguished by orientability.Example 5.4. The matri
es �0 t1 1� and �1 t1 1� are not distinguishedby the invariants above. Are they twistwise 
ow equivalent? I askedthis question in 1997 [Su4℄. The answer was found in 2002 and willappear in a joint paper with Mike Boyle [BS℄. We begin our dis
ussionof these ideas in the next se
tion.6. Enter K-theoryThere is a new approa
h to symboli
 dynami
s. It is being developedby a number of resear
hes largely in response to the diÆ
ulties that



TWISTWISE FLOW EQUIVALENCE 11arose around attempts to settle the Williams Conje
ture (that StrongShift Equivalen
e 
ould be redu
ed to a weaker and 
omputable relation
alled Shift Equivalen
e). The Williams Conjun
ture is now known tobe false [KR℄.The new approa
h exploits tools from algebrai
 K-theory. I initiallyfound the prospe
t of having to learn K-theory rather daunting. For-tunately mu
h help is available. The expository arti
les on K-theoryand symboli
 dynami
s [B2℄, [BW℄ and [Wa℄ were most helpful. For abeginners look at K-theory itself I re
ommend [Si℄, and [R℄ for a moreadvan
ed treatment. Fortunately, few details of K-theory are needed tounderstand its appli
ation in symboli
 dynami
s. The 
entral featureof the new approa
h is that the awkward matrix moves for SSE andPS are repla
ed with the more natural row and 
olumn operations,but these a
t on in�nite matri
es. This paper 
on�nes itself to howthis new approa
h was applied to settle the twistwise 
ow equivalen
eproblem.6.1. Positive Equivalen
e. In this subse
tion we restri
t ourselvesto the 
ase where G = h1i, the trivial group. Given an n � n ma-trix A de�ne A1 to be the in�nite matrix, one indexed by i; j inN = f1; 2; 3; :::g, whose upper right 
orner agrees with A and is zeroelsewhere. We let I � A1 be the in�nite identity matrix minus A1.Let SL(N ;Z) be the set of in�nite matri
es indexed by N with en-tries in Z and determinant equal to one. For U and V in SL(N ;Z)let (U; V )(A) = I � U(I � A)V = B. That is, B is determined byU(I � A)V = I �B. 1Let for i 6= j let Eij be the in�nite elementary matrix with 1 as itsij-entry and equal to the identity matrix elsewhere.De�nition 6.1. Let A and B be a square matri
es over Z+ (not ne
es-sarily of the same size), and assume the ij-entry of A is positive. Thenthere is a basi
 positive equivalen
e (BPE) from A to B if (I; Eij) or(Eij; I) takes A1 to B1. Be
ause we want to de�ne an equivalen
erelation, we will say there is a BPE from B to A, whenever there isone from A to B. If there is a sequen
e of basi
 positive equivalen
esfrom A to B we say there is a positive equivalen
e (PE) from A to B,and write A +� B. Now PE is an equivalen
e relation.De�nition 6.2. A matrixM over Z+ is essentially irredu
ible if it hasa unique prin
ipal submatrix that is irredu
ible and that is 
ontained1In [BS℄ (U; V )(M) was de�ned to be UMV and one worked dire
tly with Iminus the in
iden
e matrix.



12 SULLIVANin no larger irredu
ible prin
ipal submatrix; su
h a submatrix is 
alledthe irredu
ible 
ore of M .Example 6.3. Let A = 240 1 01 0 10 1 035 and apply (I; E32(1)). We getA +� 240 1 01 1 10 0 035. The 
orresponding irredu
ible 
ore is �0 11 1�.Theorem 6.4. PE and FE are the same.Sket
h of Proof. That PE implies FE 
an be observed in Figure 7; itshows how a BPE e�e
ts a graph (ignore the labels for now). This was�rst shown expli
itly by Boyle [B3℄ but was impli
it in Franks paper[F2℄. The other dire
tion is harder. It is well known the any SSE 
an bebroken down into basi
 splitting and their inverses (amalgamations).One shows that these 
an be fa
tored into BPEs. The PS move 
analso be fa
tored into BPEs. This dire
tion is due to Boyle [B3℄. �PSfrag repla
ements pp qqg gqgpFigure 7. BPE gives a FEExample 6.5. (a)Let A = �1 21 2� and E = �1 10 1�. Then (E; I)(A) =�2 31 2�. We see in Figure 8 that one edge from vertex 1 to 2 is deleted,but an edge is added for ea
h length 2 path that started with theremoved edge.(b) Next observe that (I; E)(B) = �1 21 3�. We see in Figure 9 that hesame edge is deleted but now we add an edge for ea
h length 2 paththat ended with the deleted edge.(In Figures 8 & 9, the edge to be deleted in the left graph is dashedand the edges added to form the right graph are dashed.)



TWISTWISE FLOW EQUIVALENCE 13PSfrag repla
ements 11 22Figure 8. Graphs for Example 6.5aPSfrag repla
ements 11 22Figure 9. Graphs for Example 6.5bWe have traded one problem for another. The awkward matrix movesof SSE and PS have been repla
ed by row and 
olumn operations. How-ever, we must now tread very 
arefully lest our new matrix fail to benonnegative. The next result eliminates this diÆ
ulty. It was provedby Boyle [B3, Theorem 3.3℄ in greater generality than we give here;spe
i�
ally the matri
es were allowed to be redu
ible and the state-ment of the theorem in
luded spe
ial notation for tra
king irredu
ible
omponents.Theorem 6.6. Let A and B be essentially irredu
ible square matri
esover Z+. Suppose U and V are in SL(N ;Z) and (U; V )(A) = B. Then(U; V ) 
an be fa
tored into BPEs.The proof of the Theorem 6.6 involves an intri
ate and 
lever seriesof matrix moves.6.2. Ba
k to twistwise 
ow equivalen
e. We return to the settingG = ht j t2 = 1i, but stress that many of the results dis
ussed hold forany �nite group. In parti
ular there is a notion of G-
ow equivalen
e,whi
h is de�ned algebrai
ally, that generalizes twistwise 
ow equiva-len
e. The idea of BPE still works in this setting. The elementarymatri
es Eij(g) have ij-entry g 2 G, i 6= j. We 
an a
t on a matrix Aover Z+G with (Eij(g); I) and (I; Eij(g)), provided the ij-entry of Ahas g as a summand. See Figure 7, but now pay 
lose attention to thelabels. Theorems 6.4 and 6.6 were generalized to the 
ase where G is a�nite group in [BS℄. For the former this was straight forward, even the�niteness of G was not required. For the generalization of Theorem 6.6



14 SULLIVANmore needs to be said. Both the �niteness of G and the irredu
ibilityassumption will be required.Suppose A is a matrix over Z+G. We asso
iate to A a labeled graphGA su
h the there is an edge from vertex i to j with label g for ea
ho

urren
e of g in the ij-entry of A. For example, if A(i; j) = 2+ 3g+12h there would be two edges with label 1, the group identity element,three with label g and 12 with label h. The weight of an allowed pathe1e2 : : : ek is the group produ
t of the labels in order. (For �nite G [BS,x2℄ shows that G labeled SFTs 
an be viewed as SFTs with a free rightgroup a
tion. Then a G-FE is a 
ow equivalen
e that the 
ommuteswith the group a
tion. We will only need this point of view in theappendix.)De�nition 6.7. Suppose G is a �nite group, A is an essentially ir-redu
ible matrix over Z+G and i is a vertex indexing a row of theirredu
ible 
ore of A. Then Wi(A) is the subgroup of G whi
h is theset of weights of paths from i to i, and the weight 
lass of A, W (A), isthe 
onjuga
y 
lass of Wi(A) in G.That the weight 
lass is well de�ned is shown in [BS℄ { the �nitenessof G and the irredu
ibility of A are used. In the 
ase that G is Abelianall of the Wi(A) are the same and we may talk about the weight groupof A. If G �= Z=2 then W (A) is either G or trivial. It is equivalent tothe orientation invariant O(A).The promised generalization of Theorem 6.6 is given by Theorem6.3 of [BS℄. We restate it below for the 
ase G �= Z=2. First notethat if A and B have trivial weight groups then they are twistwise 
owequivalent if and only if the PS+ and BF+ invariants are equal. (It isnot hard to show that if W (A) is trivial, A is twistwise 
ow equivalentto a matrix over Z+.)Theorem 6.8. Let G = ht j t2 = 1i. Let A and B be essentially ir-redu
ible matri
es over Z+G and assume both have weight group G.Then A and B are twistwise 
ow equivalent if and only if there is aSL(N ;ZG) equivalen
e from I � A1 to I � B1.Example 6.9. Let A = �0 t1 1�, B = �1 t1 1�, and E = �1 10 1�. ThenE(I �A) = I �B, A and B are twistwise 
ow equivalent. This settlesthe question raised in Example 5.4. Noti
e E does not give a basi
positive equivalen
e. However, following the philosophy of the proofsin [BS℄, we let Q1 = �1 01 1� and Q2 = �1 t0 1�. Then (I; Q1), (I; Q2),



ALMOST FLOW EQUIVALENCE 15(E; I), (I; Q�12 ), (I; Q�11 ) is a sequen
e of basi
 positive equivalen
estaking A to B.To fully exploit Theorem 6.8 we would like to have an algorithm thatdetermines when two matri
es are SL(n;ZG) equivalent. If the ringZG was a PID then we 
ould put two su
h matri
es into their Smithnormal forms and 
ompare them. (See any graduate algebra text forthis result.) But even forG �= Z=2 is not a PID. There are zero divisors:(1� t)(1+ t) = 0. To the best of our knowledge the general problem ofde
iding SL(n;ZG) has not been expli
itly addressed in the literature.The problem may be quite diÆ
ult. There are matri
es over ZZ=2 thatare not equivalent to a triangular matrix or to their own transpose [BS,x8℄.However, there is Smith normal form for a spe
ial 
ase [BS, x8℄.Theorem 6.10. Let G = Z=2. Let M be an n � n matrix over ZG.Write M = A+Bt with A and B n�n matri
es over Z. If det(A+B)is is not divisible by four, then M is SL(n;ZG)-equivalent to a Smithnormal form. This is the form 
orresponding to (C;D), where C andD are the Smith normal forms for A+B and A� B.6.3. Open questions.� Can these results be extended to in�nite groups? The group Znis of spe
ial interest in ergodi
 theory. The weights are probabil-ities whi
h generate of 
opy of Zn embedded as a multipli
ativesubgroup of the positive reals.� Can these results be extended to redu
ible matri
es?� Is there an an algorithm to 
lassify matri
es over SL(n;ZZ=2)?Appendix A. Almost Flow Equivalen
eby Mike Boyle and Mi
hael C. SullivanFor this appendix, we swit
h to joint authorship and prove a newresult (Theorem A.1).Theorem A.1. Let G be a �nite group. Then all nontrivial faithfulirredu
ible G-SFTs are almost 
ow equivalent.We begin with some de�nitions. Let (Xi; �i) (or just Xi) denotean irredu
ible SFT and let (Fi; (�i)t) (or just Fi) denote its standardsuspension 
ow (De�nition 3.1). An irredu
ible SFT is trivial if it
ontains only one orbit; equivalently, the (mapping torus) domain ofits suspension 
ow is a topologi
al 
ir
le. A semiequivalen
e of 
owsf : Fi ! Fj is a 
ontinuous surje
tion whose restri
tion to any orbitin the domain is an orientation preserving lo
al homeomorphism onto



16 BOYLE & SULLIVANsome orbit in the range. A semi
onjuga
y of 
ows is a semiequivalen
ef : Fi ! Fj su
h that, in addition, (�j)tf = f(�i)t.Irredu
ible SFTs X1; X2 are almost topologi
ally 
onjugate if there isa third irredu
ible SFT X3 su
h that for i = 1; 2 there is a 
ontinuousshift-
ommuting surje
tion fi : X3 ! Xi whi
h is uniformly �nite toone (i.e. there is a uniform �nite bound on the number of preimagesof any point) and one-to-one almost everywhere (i.e. any point of Xiin a bilaterally transitive orbit has a unique preimage). (Here X3 isan almost 
onjugate extension of Xi.) Note, su
h a map fi indu
es asemi
onjuga
y of 
ows F3 ! Fi. We have then the following natural
ow equivalen
e analogue of almost topologi
al 
onjuga
y. Irredu
ibleSFTs (X1; �1); (X2; �2) are almost 
ow equivalent if there is a thirdirredu
ible SFT (X3; �3) su
h that for i = 1; 2 there is a semiequivalen
eof 
ows F3 ! Fi whi
h is uniformly �nite to one and one-to-one almosteverywhere (i.e. any point on a bilaterally transitive 
ow line has aunique preimage).Almost topologi
al 
onjuga
y is a weakening of 
onjuga
y whi
h isuseful in parti
ular for studying the SFTs with respe
t to 
ertain in-variant measures. One of the basi
 results in symboli
 dynami
s is theAdler-Mar
us Theorem : two irredu
ible SFTs are almost topologi
ally
onjugate if and only if they have the same topologi
al entropy and pe-riod (see [AM℄ or [LM, Theorem 9.3.2℄). The 
ow equivalen
e analogueof the Adler-Mar
us Theorem is the following fa
t [B4℄: all nontrivialirredu
ible SFTs are almost 
ow equivalent. This is the result whi
his generalized to G-SFTs by Theorem A.1.Let G be a group. A G-SFT is an SFT together with a 
ontinu-ous right G a
tion whi
h 
ommutes with the shift (i.e., for all x; g wehave (�x)g = �(xg)). We will only 
onsider �nite groups. A G-SFTis irredu
ible and nontrivial if the underlying SFT is. The G a
tion isfaithful if no element other than the identity in G a
ts by the identitymap. A faithful G-SFT is a G-SFT for whi
h the G a
tion is faithful.The G a
tion on a G-SFT Xi indu
es in an obvious way a G a
tionon the suspension 
ow (Fi; (�i)t) su
h that (�i)tg = g(�i)t for all g inG. With this a
tion we 
all Fi a G-
ow. We say irredu
ible G-SFTsX1; X2 are almost 
ow equivalent (as G-SFTs) if there are semiequiv-alen
es of 
ows F3 ! F1, F3 ! F2 as above for whi
h in addition ea
hsemiequivalen
e F3 ! Fi is equivariant with respe
t to the G-a
tion.The relation of being almost 
ow equivalent is indeed an equivalen
erelation, by a standard type of pullba
k argument (
ompare [AM, The-orem 2.17℄).A G-SFT is free if the G a
tion is free, i.e., if g 2 G and there existsx in the SFT su
h that gx = x, then g must be the identity element of



ALMOST FLOW EQUIVALENCE 17G. We will summarize some fa
ts reviewed in detail in [BS, Se
tion 2℄.Suppose that A is a square matrix over Z+G. Then A gives rise to aG-labeled dire
ted graph, where the adja
en
y matrix of the unlabeledgraph is denoted jAj (it is the image of A under entrywise appli
ationof the augmentation map ZG ! Z). This graph de�nes an SFT XjAjwith a 
ontinuous map into G, from whi
h a skew produ
t SA maybe 
onstru
ted. This skew produ
t is an SFT whi
h 
arries a naturalG-a
tion with whi
h it is a free G-SFT. Conversely, any free G-SFT is
onjugate to one indu
ed by su
h a matrix A. (A 
onjuga
y of G-SFTsis simply a G-equivariant topologi
al 
onjuga
y of SFTs.)For the proof of Theorem A.1, we will use three more fa
ts, whi
hfollow from the adja
ent 
itations.Fa
t A.2. [B4, Lemma 2.4℄ Every irredu
ible nontrivial SFT is 
owequivalent to a mixing SFT with entropy log 2.Fa
t A.3. [AKM, Theorem 3℄ Let G be a �nite group. Then anyirredu
ible faithful G-SFT has an almost 
onjugate extension to anirredu
ible free G-SFT.Fa
t A.4. [AKM, Theorem 4℄ Let G be a �nite group. Then twofaithful mixing G-SFTs are almost topologi
ally 
onjugate if and onlyif they have the same entropy.Remark A.5. Fa
t A.4 is a generalization of the Adler-Mar
us Theo-rem to G-SFTs. For the irredu
ible 
ase and more general a
tions, alsosee [AKM℄. For a di�erent proof see [P℄. For analogous generalizationsof right 
losing almost topologi
al 
onjuga
y to G-SFTs, and some 
lar-i�
ation of the [AKM℄ invariants for irredu
ible G-SFTs (a spe
ial 
asein [AKM℄), see [D℄.We 
an now prove Theorem A.1. Suppose G is a �nite group andX1; X2 are irredu
ible nontrivial faithfulG-SFTs. By Fa
t A.3, ea
h Xihas an almost 
onjugate extension to an irredu
ible free G-SFT. Thuswithout loss of generality we may assume that Xi is a skew produ
tover an SFT XjA(i)j de�ned by an irredu
ible matrix A(i) over Z+G,with weights 
lass G. By Fa
t A.2, the SFT XjA(i)j is 
ow equivalent toa mixing SFT of entropy log 2. This 
ow equivalen
e naturally lifts tothe skew produ
t. So without loss of generality, we may assume thatea
h XjA(i)j is mixing with entropy log 2. By the Adler-Mar
us Theo-rem, there is a 
ommon mixing almost 
onjugate extension of XjA(1)jand XjA(2)j to some XC . This 
an be done by one blo
k 
odes [AM℄,under whi
h the G-labelings (de�ned from the A(i)) on the graphs with
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en
y matri
es jA(i)j lift to G-labelings on the graph with adja-
en
y matrix C. Thus without loss of generality, we may assume thatea
h jA(1)j = jA(2)j = C where XC is a mixing SFT of entropy log 2.Now the only barrier to 
iting Fa
t A.4 is the possibility that oneor both of the skew produ
t SFTs Si de�ned from A(i) is not mixing.(These skew produ
ts remain irredu
ible SFTs through all the 
on-stru
tions.) Let Gi be the labeled graph de�ned by Ai. Let G denotethe underlying unlabeled graph, the same for G1 and G2. The periodof the irredu
ible SFT Si is the g.
.d. of the lengths of those loops inGi whi
h have weight e (where e denotes the identity element in G). Ifthis g.
.d. is not 1 for the Gi, then we will pass to new labeled graphsG 0i, with the same underlying unlabeled graph G 0, as follows.By positive entropy, there are distin
t (not ne
essarily simple) loops`1; `01 in G1 of equal length with weight e. Likewise there are loops`2; `02 of equal length, whi
h are distin
t from ea
h other and from`1; `01, and whi
h have weight e in G2. After passing to the same higherblo
k presentation of C (pulling along the G-labelings), we 
an assumewithout loss of generality that there is an edge e1 traversed exa
tly on
eby `1 but not at all by `01; `2 or `02; and there is an edge e2 traversedexa
tly on
e by `2 but not at all by `02; `1 or `01. For i = 1; 2, 
onstru
tG 0i from Gi by making the following 
hanges to Gi� Delete the labeled edges e1 and e2.� For j = 1; 2, add a new vertex vj; add a new edge e0j from theinitial vertex of ej to vj; and add a new edge e00j from vj to theterminal vertex of ej.� Label e001 and e002 with the identity element of G.� Label e01 and e02 respe
tively with the labels of e1 and e2 in Gi.We have Z+G matri
es B1; B2 des
ribing the new labeled graphs, andtheir indu
ed skew produ
ts are 
learly G-
ow equivalent respe
tivelyto S1 and S2. Moreover, these skew produ
ts must be mixing. Finally,be
ause jB1j = jB2j, they also have equal entropy. By Fa
t A.2, theyare almost 
ow equivalent. This 
on
ludes the proof of Theorem A.1.Finally we remark that Ara�ujo [A℄ studies almost 
ow equivalen
e ofsto
hasti
 systems. These 
an be viewed as SFTs with a skew produ
tover a group whi
h is a 
opy of Zn embedded in the multipli
ative groupof positive real numbers [P℄. Ara�ujo shows that if the group is in�nite
y
li
, then the group is the only invariant of almost 
ow equivalen
e,and he shows that this is not true for more general groups.We thank Andrew Dykstra for helpful 
omments on the appendix.
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