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Abstract. Smale flows on 3-manifolds can have invariant saddle
sets that are suspensions of shifts of finite type. We look at Smale
flows with chain recurrent sets consisting of an attracting closed
orbit a, a repelling closed orbit r and a saddle set that is a suspen-
sion of a full n-shift and draw some conclusions about the knotting
and linking of a ∪ r. For example, we show for all values of n it is
possible for a and r to be unknots. For any even value of n it is
possible for a ∪ r to be the Hopf link, a trefoil and meridian, or a
figure-8 knot and meridian.

1. Introduction

This paper builds on work done in [13, 8, 16] on Smale flows in which
information about a saddle set’s topology is used to discern information
about the knotting of attracting and repelling closed orbits. These in
turn built on work of John Franks on the homology of Smale flows
[5, 7]. What is new in the present paper is that we connect information
about the dynamics of the saddle set with the link type of a∪ r. To do
this we limit ourselves to saddle sets that are suspensions of full n-shift
spaces. We are able to draw some conclusions about a∪ r for all values
of n. It is easy to show that if n is odd lk(a, r) is even, while if n is
even lk(a, r) is odd (see Corollary 2.4 below). We show for all values
of n ≥ 2 it is possible for a and r to be unknots. For any even value of
n ≥ 2 it is possible for a∪ r to be the Hopf link, a trefoil and meridian,
or a figure-8 knot and meridian.

A limitation is that while we show many realizable constructions, we
cannot rule out any link type for a∪ r except for the restriction on the
linking number’s parity. Whether any additional restrictions exist is
an interesting open question.
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Section 2 gives background material. The main result is stated and
proved in Section 3. A discussion follows in Section 4.

2. Background

Let M be a compact Riemannian 3-manifold. A flow is a map φ :
M × R → M such that φ(x, s + t) = φ(φ(x, s), t) and φ(x, 0) = x.
We are interested in flows with hyperbolic chain recurrent sets and
transverse stable and unstable manifolds; see [4]. Such flow is called a
Smale flow if the chain recurrent set is at most one dimensional. In
fact, we will be concerned with nonsingular Smale flows so the chain
recurrent sets will be one dimensional.

By Smale’s Spectral Decomposition Theorem [4] a hyperbolic chain
recurrent set can be decomposed into a finite collection of disjoint,
compact pieces each having a dense orbit. The pieces are called the
basic sets of the flow. For a nonsingular Smale flow on a 3-manifold
each basic set is either an isolated attracting closed orbit, an isolated
repelling closed orbit, an isolated closed orbit of saddle type, or a saddle
set consisting of infinitely many closed orbits and non-closed orbits
some of which are dense. This last type we will refer to as being
nontrivial or chaotic. If there are no nontrivial basic sets the flow is
called Morse-Smale. On S3 these were classified by Wada [14] following
Morgan [11]. Classifying Smale flows is probably intractable, so instead
we study more limited classes.

The nontrivial basic sets are suspensions of shifts of finite type (SFT).
An SFT is a set of bi-infinite sequences of symbols from a finite alphabet
determined by a finite list of forbidden blocks, together with a shift map
that shifts entries of an sequence once to the left [10, 12]. Two SFT’s
are equivalent or topologically conjugate if there is a homeomorphism
that commutes with their shift maps. While an SFT can be finite,
those giving nontrivial basic sets are infinite and have a dense orbit.
The SFT on n symbols with no forbidden blocks is called the full n-shift
space.

Any SFT can be determined, non-uniquely, by a square matrix over
the non-negative integers. Such matrices are called incidence matrices
and they can be constructed from a Markov partition. The definition is
technical (see for example [10, 12, 3]) but a Markov partition of a SFT
is a finite collection of subsets, usually called “rectangles”, that cover
the space, are disjoint and behave well under the shift map. Suppose
(R1, . . . , Rn) is a Markov partition for (Σ, σ). Then the ij-entry of the
n×n incidence matrix counts how many times σ(Ri) “passes through”
Rj. For a fine enough Markov partition we can insure the incidence
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matrix has entries of only 0’s and 1’s. For the SFT to be infinite, no
incidence matrix can be a permutation matrix. For the SFT to have a
dense orbit, any incidence matrix must be irreducible.

For the full n-shift the n × n Matrix of all 1’s and the 1 × 1 matrix
[n] are both incidence matrices. In the first case there are n rectangles
and the image of each passes once through each of the others. In the
second there is one rectangle whose image passes through itself n times.

Let A and B be square matrices of non-negative integers. We say
an SSE-move takes A to B if there are rectangular matrices of non-
negative integers R and S such that A = RS and B = SR. If there is
a finite sequence of SSE-moves taking A to B then A and B are strong
shift equivalent. It was shown by Williams [15] that two square matrices
of non-negative integers determine equivalent (topologically conjugate)
SFT’s if and only if they are strong shift equivalent. The SSE-move
amounts to forming splittings and amalgamations of the rectangles to
get a new Markov partition.

An SFT (Σ, σ) determines a suspension flow by using the vector
field (0Σ, ∂/∂t) on Σ × I and then identifying (x, 1) with (σ(x), 0).
This defines a one-dimensional flow. We say two square matrices of
non-negative integers are flow equivalent if there is a flow preserving
topological equivalence between the suspensions of the SFT’s they de-
termine. A theorem of Franks [6] determines this for irreducible non-
permutation matrices (which are all we need) in terms of easily com-
puted invariants.

Theorem 2.1 (Franks [6]). Let A and B be square matrices of non-
negative integers and assume they are irreducible and not permutations.
Then A is flow equivalent to B if and only if

det(I − A) = det(I − B) and
Z

n

(I − A)Zn
∼=

Z
m

(I − B)Zm
,

where n and m are the sizes of A and B, resp.

The first invariant is called the Parry-Sullivan number and the sec-
ond is the Bowen-Franks group. A generalization to certain reducible
matrices can be found in [9].

Example 1.

[

1 1
1 1

]

is strong shift equivalent to [2], the full 2-shift.
[

1 1
2 1

]

is not strong shift equivalent to [3] since the trace is known to

give the number of fixed points. But, as the reader can check, they are
flow equivalent.
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In this paper we will restrict ourselves to simple Smale flows on S3

which we define to be nonsingular Smale flows with three basic sets,
an attracting closed orbit a, a repelling closed orbit r, and a nontrivial
saddle set s. The following proposition follows directly from another
result of Franks [7, Theorem 1].

Proposition 2.2. For any n ≥ 2 there exists a simple Smale flow on
S3 such the saddle set is the suspension of the full n-shift.

In this paper we begin to explore the possible link types of the
attractor-repeller pair in such flows.

Following Franks [5] we modify the incidence matrix of s for a given
Markov partition. Assume we have a Markov partition that is fine
enough for the incidence matrix to have only 0’s and 1’s. We can
place an orientation on each rectangle and ask if the first return map
is orientation preserving or reserving going from Ri to Rj . If it is
orientation reserving we change the 1 in the ij place to −1. This
produces the structure matrix for a nontrivial basic set. There is a
relationship between the structure matrix and the linking number of a
and r.

Theorem 2.3 (Franks 1981 [5]). In a simple Smale flow the unsigned
linking number of the attractor a and repeller r is the absolute value of
the determinant of I minus the structure matrix,

|lk (a, r)| = |det (I − S)|.

Henceforth, we use lk(a, r) to mean the unsigned linking number.

Corollary 2.4. For a simple Smale flow with saddle set a suspension
of the full n-shift we have that lk (a, r) is even if n is odd and is odd if
n is even.

Proof. Assume a Markov partition that is fine enough that the inci-
dence matrix A is a 0-1 matrix and that the structure matrix S is well
defined. The incidence matrix is strong shift equivalent to the 1 × 1
matrix [n]. Hence, det(I − A) = det([1 − n]) = 1 − n. The structure
matrix S is mod 2 equivalent to A. The result follows. �

A template is a compact branched 2-manifold with boundary and
a smooth expansive semi-flow. Templates are formed from splitting
charts and joining charts as shown in Figure 1. Each joining chart
contains a branch line. The charts are joined together so that flow
lines match and orbits only exit templates in the middle portion on
the exit set of the splitting charts. The simplest template is the Lorenz
template also shown in Figure 1.
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Figure 1. A joining chart, a splitting chart and a
Lorenz template.

Templates are used to model nontrivial basic sets in the following
sense. Suppose B is a nontrivial basic set of a Smale flow. Then
there exists an embedded template T such that there is a one-to-one
correspondence between the periodic orbits of B and those of T that
preserves the knot type of each periodic orbit and the link type of any
finite link of periodic orbits. This correspondence is constructed by
choosing a “nice” neighborhood of foliated by local stable manifolds
and then collapsing along the stable direction. The template is not
unique as “tighter” neighborhoods yield more complex templates. The
basic set can be recovered from T by taking an inverse limit. This is
due to Joan Birman and Robert Williams [2] and can also be found in
[3].

The neighborhood used to construct the template is called a thick-
ened template, but we enlarge it slightly along the edges of the template
so that all the periodic orbits are in the interior. It is a handlebody.
Its boundary has an exit set where the flow exits and an entrance set
where the flow enters. Usually one works with their closures. Their
common boundary is a finite set of circles where the flow is tangent to
the boundary of the thickened template. Thus, given a template for
the saddle set of a simple Smale flow on S3, it can be thickened and the
exit and entrance sets glued to solid tori neighborhoods of a and r to
reconstruct the simple Smale flow from neighborhoods of its basic sets.
Figure 2 illustrates the exit and entrance sets for a thickened Lorenz
template.

Given a template one can easily choose a collection of cross sec-
tional disks for a Markov partition. Then the incidence matrix can
be determined by just following the bands, and the structure matrix is
determined by checking the number of half twists in the bands between
each pair of disks.

We describe a common operation in “template theory” called attach-
ing a disk. Let D = D2 [−ǫ, ǫ]. Give it the vector field (0, 0) × ∂ ∂t
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Figure 2. Exit and entrance sets for a thickened Lorenz template

where t is a parameter for the interval [−ǫ, ǫ]. On a thick template T

select one of the circles C of tangential points in the boundary. Delete
a small neighborhood of C in T as shown in Figure 3. This creates an
annulus of points tangent to the flow. Now glue the edge of D, that is
∂D2 × [−ǫ, ǫ], to this annulus. Do this so as to create a new neighbor-
hood of the same saddle set that has a flow transverse to its boundary.
No new invariant orbits or points are created. Figure 3 illustrates this
by showing a cross section.

Figure 3. Attaching a disk

3. Results

Theorem 3.1. A. Let n ≥ 3 be odd. There exists a simple Smale
flow on S3 such that the saddle set is a suspension of a full
n-shift, with a ∪ r unlinked unknots. This can be done so that
the attractor (repeller) links every closed orbit in the saddle
set except one and the repeller (attractor) links no other closed
orbits, or neither links any other closed orbits.

B. Let n ≥ 2 be even. There exists a simple Smale flow on S3 such
that the saddle set is a suspension of a full n-shift, lk(a, r) = 1
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and the pair a ∪ r can be any of, (i) a Hopf link, (ii) a trefoil
and meridian, or (iii) a figure-8 knot and meridian.

C. Let n ≥ 3 be odd and p be any integer. There exists a simple
Smale flow on S3 such that the saddle set is a suspension of
a full n-shift, where a (resp. r) has braid word σ2p+1 and r
(resp. a) is an unknot serving as a braid axis. It follows that
lk(a, r) = 2.

D. Let n ≥ 2 be even. There exists a simple Smale flow on S3 such
that the saddle set is a suspension of a full n-shift, a∪r consists
of (p, 3)-torus knot and its unknotted core; hence lk(a, r) = 3.

Given a template T we define an operation that we call an α-move.
One selects a rectangular patch in a band away from any branch lines.
The template’s flow enters transversely along one edge of the patch,
exits transversely along the opposite edge, and the other two edges
contain flow lines that are in the boundary of the template. This
patch, call it R, is then deleted and replaced with a new structure, Rα,
shown in Figure 4. This creates a new template, T α.

Figure 5 shows the result of applying an α-move to the Lorenz tem-
plate. Call the result Lα. The figure also shows possible choices of
Markov partitions for each template. If we take a first return map us-
ing the partition given for the Lorenz template, it is clear that it will
be conjugate to the full 2-shift. For the partition of Lα the first return
map will be conjugate to a full 4-shift. Clearly, the α-move alters the
dynamics, but in a controlled way.

α-move

Figure 4. Altering a template.

The main tool in the proof is the following lemma.

Lemma 3.2. Let φt be a flow on a 3-manifold M with hyperbolic chain
recurrent set R with basic set decomposition

⋃

Bi. Let T be a template
that models a nontrivial 1-d basic set, Bj. Let T α be a template derived
from T by applying an α-move.
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Figure 5. α-move applied to the Lorenz template

Then there exists a flow φα
t on M with hyperbolic chain recurrent

set Rα that has the same basic sets as R except that Bj is replaced by
Bα

j which is modeled by T α. Further, the global topology of Rα −Bα
j is

the same as R’s; in particular, the knotting, linking and stability types
of these closed orbits are unchanged and no singularities are created.

Proof. Let I = [0, 1] and Iǫ = [−ǫ, ǫ]. Let T and Tα denote the thick-
ened versions of T and T α, resp. Let R ∼= I×I be the rectangular patch
in T and Rα be its replacement in T α as in Figure 4. Let R ∼= R × Iǫ

be the subset of T corresponding to R. We assume all orbit segments
of the saddle set s are within R × [−ǫ/10, ǫ/10] and that no other or-
bits of the chain recurrent set enter R. Let Rα be the portion of Tα

corresponding to Rα. We can make Tα thin enough that it is within T

and with the two vector fields identical outside of R.
For R ∼= I × I × Iǫ suppose that the first factor is going horizontally

left to right, the second as vertically going from top to bottom and the
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last factor is the thickness. Write ∂R = F1 ∪ · · · ∪ F6 where,

F1 = {(0, t, s) | t ∈ I, s ∈ Iǫ},

F2 = {(1, t, s) | t ∈ I, s ∈ Iǫ},

F3 = {(t, 0, s) | t ∈ I, s ∈ Iǫ},

F4 = {(t, 1, s) | t ∈ I, s ∈ Iǫ},

F5 = {(t, s, ǫ) | t ∈ I, s ∈ I},

F6 = {(t, s,−ǫ) | t ∈ I, s ∈ I}.

Now, F1 and F2 are subsets of the exit set of T, while F5 and F6 are
subsets of the entrance set of T. The flow within T enters R through
F3 and exits through F4. Let F α

i , i = 1, . . . , 6 be the corresponding
parts of ∂Rα. See Figure 6.

Now T, Tα and Rα are handle bodies. The genus of Rα is two,
while the genus of Tα is two plus the genus of T. We will attach
two thickened disks D1 and D2 to Rα along annuli in F α

1 and F α
2 ,

respectively, with vector fields as described in Section 2. The cores of
these annuli are closed curves in the boundary of the exit set and are
shown darkened in Figure 6. Now, Rα∪D1∪D2 is a topological 3-ball,
and Tα∪D1 ∪D2 is a neighborhood of the saddle set sα whose exit set
can be attached to ∂A exactly as the exit set of T was. All this can be
done inside the region R without affecting the rest of the flow. �

F α
1

F α
2

Figure 6. Portion of the exit set of Tα that is in Rα

Proof Theorem 3.1. Case A. Figure 7(a) shows a template T with a di-
agram that depicts the attractor in blue (or dark), a solid torus neigh-
borhood in green (or gray) and the repeller in red (or dark). A three
member Markov partition (shown as black bars) with a disk cutting
across each of the bands coming down from the upper branch line
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(dotted) has first return map conjugate to the full 3-shift. Taking the
thickened template and attaching the green solid torus along its exit set
as suggested by the figure results is a new solid torus that is unknotted
in S3. The attractor and repeller are unknotted and unlinked. Apply
the α-move to the right most band coming from the branch line. The
right most Markov disk can be divided into three disks and one sees
that the first return map is conjugate to the full 5-shift. Repeat. The
proof follows by induction.

In the construction above neither the attractor nor the repeller links
other closed orbits. Figure 7(b) gives an example where the repeller
links every closed orbit in the saddle set except one and the attractor
still links no other closed orbits. In Figure 7(c) both the attractor and
repeller link closed saddle orbits. We can apply α-moves to each of
these as before.

(a)

a

r

(b)

a

r

(c)

a

r

Figure 7. Templates for Case A.

Case B(i). This is known for n = 2 [13]. See Figure 8(a). The two
element Markov partition gives a two-by-two incidence matrix of all
ones. So, this is a suspension of a full 2-shift. The entire exit set of
the thickened template is glued to a topological disk in the boundary
of a tubular neighborhood of the attractor a. This neighborhood is
shown in green (or gray), the attractor is blue (or dark), the repeller r
is in red (dark). This tubular neighborhood of r is not shown, but is
the closure if the complement of the union of the thickened template
and the tubular neighborhood of a. Apply the α-move to either band
of the template and use induction as in Case A. It is clear that each
application of the α-move increases n by two.

Case B(ii). This is known for n = 2 [13]. See Figure 8(b). Now
the exit set of the thickened template is attached to the boundary of
a tubular neighborhood of a so that the two annuli are glued along
meridians. Apply the α-move and use induction.
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Case B(iii). This is known for n = 2 [8]. See Figure 9. We apply
the α-move to the right band below the lower branch line. Subsequent
α-moves are applied to the right most band below the lower branch
line. However, it is not obvious that we still have a full shift. Figure
10 shows the result of applying the α-move once with our choice for
the Markov partition. To see that we do still have a full shift first
return map notice that the incidence matrix after applying k α-moves
is 2k + 2 × 2k + 2 of the form

Q =





















1 1 0 · · · 0
0 0 1 · · · 1
0 0 1 · · · 1
1 1 0 · · · 0
1 1 0 · · · 0
...

...
...

...
...

1 1 0 · · · 0





















.

Then Q = RS where

R =

















1 0
0 1
0 1
1 0
...

...
1 0

















and S =

[

1 1 0 · · · 0
0 0 1 · · · 1

]

.

But then SR =

[

1 1
2k − 1 1

]

. The Parry-Sullivan number and Bowen-

Franks group of I − SR are 1 − 2k and Z

(2k−1)Z
, respectively. These

are identical to the invariants for the full 2k-shift. Hence the flow on
the modified template is flow equivalent to the suspension of the full
2k-shift as claimed.

Note: If we change the lower “Lorenz ear” to be in front of, instead of
behind, the band from the upper branch line, we could give a different
proof of Case B(ii) [8]. In fact the template of Figure 9 can be realized
by a simple Smale flow with a ∪ r a Hopf link [8], but we thought the
Lorenz template was a cleaner approach to B(i) and B(ii).

Case C. Study Figure 11. Clearly n = 3. We can apply the α-move
repeatedly to the right most band below the branch line. It is clear
the value of n increases by two each time. Any integer value for p, the
number of full twists in the middle band, is allowed. This causes the
attractor (or repeller if we reverse time) to be σ2p−1.
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Case D. The case for n = 2 is known [16]. Figure 12 shows a real-
ization for p = 1. Apply the α-move. Use induction. �

(a)

a

r
(b)

a
r

Figure 8. (a) Full 2-shift, with Hopf link. (b) Full 2-
shift, linking number 1 with trefoil.

a

r

Figure 9. Full 2-shift, linking number 1 with figure-8 knot.

4. discussion

Figure 13 gives a table summarizing Theorem 3.1. The rows corre-
spond to linking numbers l and the columns to number of symbols n
for the full shift space. The shaded cells are those for which no exam-
ples can be constructed by Corollary 2.4. The link diagrams depict the
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Figure 10. Markov partition after one α-move on tem-
plate in Figure 9.

constructions in Theorem 3.1. We observe that in each case it is pos-
sible for both the attractor and repeller to be unknots. Is this true for
l ≥ 4? We also observe that in every construction either the attractor
or repeller is an unknot. Is this necessary? Is this true for l ≥ 4? In
the l = 0 row is it possible to get Whitehead links?

Up until recently it was unknown if there were any restrictions on
the set of two components links that could be realized as an attractor-
repeller pair for a nonsingular Smale flow on S3. However, a paper
in preparation by Francois Beguin, Christian Bonatti and Bin Yu [1]
shows that it is not possible to have two unlinked nontrivial knots as
an attractor-repeller pair. This is the only restriction we know of for
the l = 0 row of the table in Figure 11.

We chose to work in S3, but one can do Dehn surgery on the attractor
and the repeller to get simple Smale flows on other manifolds. The
figure-8 knot in the l = 1 row means such surgeries would generate
many hyperbolic manifolds. What about the other rows? Anosov flows
can generate simple Smale flows by doing two orbit surgeries [3] but
the manifold cannot be S3 and will often be hyperbolic.
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pa

r

Figure 11. Full 3-shift with linking number 2. There
are p full twists in the middle band.

a

r

Figure 12. Full 2-shift with linking number 3.
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?? ?

????

n
l

0

1

2

2

3

3

4

4

5

5 6 7 8

Figure 13. Summary of Theorem 3.1.
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