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ABSTRACT. We consider one dimensional flows which arise as hyperbolic
invariant sets of a smooth flow on a manifold. Included in our data is the
twisting in the local stable and unstable manifolds. A topological invariant
sensitive to this twisting is obtained.

1. INTRODUCTION

One dimensional flows have been classified by the work of R. Bowen & J. Franks [4], W.
Parry & D. Sullivan [9], and Franks [7]. Here, we consider the problem when some additional
information is included. For a one-dimensional flow which is a hyperbolic invariant set of a
flow on a manifold, it is usual to study the first return map on a Markov partition of a cross
section. It is possible to assign an orientation to the elements of the partition. Then the
first return map will either reverse or preserve orientation on each of the partition elements.
We define a twist matriz A(t) by incorporating orientation information into the incidence
matrix of a Markov partition. Then the computation det(I — A(¢)) mod (t? = 1) gives
our invariant. This result was conjectured in [11]. The invariant of [9], now known as the
Parry-Sullivan invariant, can be recovered by setting ¢ = 1. We shall call the invariant of
this paper the full Parry-Sullivan invariant.

This paper is organized as follows. Section 2 gives basic definitions and results of the
theory of Smale flows and maps. Section 3 develops the notion of a subshift of finite type with
parity. We prove a modified version of the theorem of Williams that classifies non-negative
integral matrices according the topological conjugacy classes of their associated subshifts of
finite type. This is used in Section 4 in the proof our main result, Theorem 4.1. In Section
5 we give an application for Smale flows in 3 dimensions. Here basic sets can be modeled
with templates, which are branched 2-manifolds with semi-flows whose periodic orbits are
ambient isotopic to those of the original flow.

2. BAsic DEFINITIONS AND BACKGROUND

If the chain-recurrent set R of flow has a hyperbolic structure then a result of Smale’s
shows that R is the union of a finite collection of disjoint invariant compact sets, called basic
sets, each of which contains a dense orbit [10]. Bowen showed that one-dimensional basic
sets are homeomorphic to suspensions of subshifts of finite type [3], defined below.

Let S be a finite set of symbols and — be a relation on S. Let ¥ = {s € Ht: Slsi —
Sit1,Vi}. We often say ¥ is the set of allowed sequences. Let o : ¥ — X be the rightward
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shift map, o(s) = s’, where s; = s,_1. Then (0,X) is a subshift of finite type. When X is
given the topology induced by the product topology it is a Cantor set.

Given an n x n matrix A of nonnegative integers one can construct a subshift of finite
type through the edge shift formulation, as described in Section 3. If the matrix entries are
all zeros and ones then one can also define a subshift of finite type through vertez shifts. Let

Ya={zecn® {1,.. o0t Agz,,, =1 for all k}

and define the right shift map ¢ : ¥4 — X4 by o(2) = y where y; = 25_1. Given a matrix
of zeros and ones the edge and vertex subshifts associated to it are topologically conjugate.

To define the suspension flow of o let X4 = 4 x [0,1]/ ~, where ~ identifies (x, 1) with
(o(x),0) and the flow ¢; on X4 is given by ¢(x,s) = (&,s+1¢) for s +¢ € [0,1) and for
other ¢ by using the identification as needed.

Two matrices are said to be flow equivalent if their induced subshifts of finite type give
rise to topologically equivalent suspension flows. A matrix A is irreducible if for each (3, j)
there is a power n such that the (4, j) entry of A” is nonzero. In terms of the corresponding
subshift and suspension, irreducibility is equivalent to the existence of a dense orbit and
so we are dealing with a single basic set. The suspension flow of a permutation matrix
consists of a single closed orbit. Permutation matrices are thus said to form the trivial flow
equivalence class.

Theorem 2.1 (Franks). Suppose that A and B are non-negative irreducible integer matrices
netther of which is in the trivial flow equivalence class. The matrices A and B are flow equi-
valent if and only if

det(I,, — A) = det(l,, — B)

and
zn Zm

~

(In —A)Z" ~ (Im — B)Z™’

where n and m are the sizes of A and B respectively and I,, and I, are identity matrices.

The main tool in the proof of Theorem 2.1 is Theorem 2.2 below, a generalization of
which we shall need later. First we define some more terms.

Two nonnegative square integer matrices, A and B are strong shift equivalent if there exist
nonnegative square integer matrices A = Ay, As,..., Ay41 = B and nonnegative integer

matrices Ry, 51, R, S, ..., Rg, Sk such that A; = R;S; and A;41 = S;R; fori=1,... k.

Theorem 2.2 (Williams). Suppose A and B are nonnegative square integer matrices and
o4 and op are the corresponding subshifts of finite type. Then o4 is topologically conjugate
to op if and only if A is strong shift equivalent to B.

The gist of this result is as follows. The matrices A and B can be thought of as incidence
matrices for maps on a finite open-closed partition of the Cantor sets X 4 and X¥p. The equi-
valence relation is generated by these operations: relabeling the partition elements, refining
a partition element into two open-closed sets, and combining two partition elements into
one. These can each be realized by the matrix move that generates strong shift equivalence.

See [12] or Appendix A of [5].
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3. SUBSHIFTS WITH PARITY
The purpose of this section is to prove the following analog of Theorem 2.2.

Theorem 3.1. Parity matrices are parity-wise topologically conjugate if and only if they
are strong shift equivalent.

We now present the relevant definitions. A subshift of finite type with parity, or just a
shift with parity for short, is a subshift of finite type together with a parity map on the
symbol set, p : S — {=1,1}. We define a function p : ¥ — {—1,1} by p(s) = p(so).
Let C = {s € X|s is periodic}/o, be called the set of cycles. Define p : C — {—1,1} by
p(c) = p(so)p(s1) - p(sn-1), where 8 = 5ps1...5,—1 is a periodic element of X of least
period n that represents the class e.

Definition 3.2. Let (o,p) and (o’,p’) be shifts with parity. Then they are parity-wise
conjugate if there is a homeomorphism h : ¥ — ¥’ such that

hoo=d'oh
and
p=poh.
It follows that parity is preserved under the induced homeomorphism on the cycle sets. If
only the first equation holds, o and ¢’ are topologically conjugate.

It is technically necessary to define what it means to iterate shifts with parity. If (¢ : £ —
Y, p: S — {—1,1}) is ashift with parity then its Eth iterate (o<k> m<k> y mi<k> - p<k>

S<k> {—=1,1}), is defined as follows. Let S<k> — {(sa," "+ ,sk-1) € Sk|si > Sip1,1 =
0, - ,k—2}. We also let (sg, -+, sp-1) <i>> (shy -+, Sk_q) mean sg_1 —> sy. These give a

subshift of finite type:
U<k> :E<k> N E<k>.

Let p<*¥>((sq, - ,sk_1)) = p(sa) - - - p(sp—1). We can extend p<¥> to cycles in T<k>,
P ) P P P Yy

A subshift with parity can be specified by giving a labeled directed graph or a matrix
whose elements take the form a + bt, where @ and b are nonnegative integers.

Given a graph G with edges labeled £1 and vertices numbered 1 through n, we define an
n x n matrix M (t) by M;; = a;; + b;;t with a;; the number of edges from vertex i to j with
label 41, and b;; the number of such edges labeled —1. Matrices of this form will be called
parity matrices. Given a parity matrix we can construct a labeled graph.

We go from an n x n parity matrix to the shift with parity as follows. Let S be a set
of Zij a;; + b;j symbols; think of them as edges on the graph. We partition S into 2n?
disjoint, possibly empty, subsets. Call them A;; and B;; for ¢ and j equal to 1 through n,
with |A;;| = a;; and |B;;| = b;;. Also, let S;; = A;; U B;;. Now we define the relation, —
on S. Let s — s', read s can be followed by s, mean s € Sj, and s’ € S; for some i, j and
k. The set of allowed sequences and the shift map are given in the usual way. The parity
map is defined by

] 1 if s € A;; for some ¢ and j
p(s) = { —1 if s € B;; for some ¢ and j

Remark. If a parity matrix’s entries are all zeros, ones and t¢’s, and we then set ¢ equal
to minus one, the parity matrix becomes the structure matriz first defined by Bowen and
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Franks [4] and [5, page 79]. In their context parity corresponded to whether the shift map
was orientation preserving or not. This is also how we shall use parity in the next section.

Lemma 3.3. Let (o,p) and (o’,p’) be the (edge) shifts with parity for the n x n parity
matrices M and M? respectively. Then (0<%?> p<?>) is parity-wise conjugate to (¢’ p').

Proof. Let a;j4b;t = M;; and aj;+b},t = (M?);5. Let (S,~,%), (5", —, %) and (S<?>, p='y
, X <2>) have their usual meanings.
Partition S<?> and S’ as follows. Since o and o’ are edge shifts we can define maps
from and to, each on S and S’ to {1,...,n} so that for s; and s3 in S
to(s1) = from(sy) <= s1 > s3,
and for s} and s4 in S’
to(s)) = from(sh) <= s} — sb.

The partition is given by
Afjb = {(s0,51) € S<?>|from(sq) = i,to(s1) = j, and p<?>((s0,s1)) = 1},
Bi§-2> = {(s0,51) € S<?>|from(so) = i,to(s1) = j, and p<?>((s0,s1)) = —1},
Ajj = A(s0,51) € S'|from(so) = i,t0(s1) = j, and p'((s0,51)) = 1},
BZ'-J- = {(s0,81) € S'|from(so) = i,to(s1) = j, and p'((s0,s1)) = —1}.

From the definition of matrix multiplication and the fact the ¢ = 1 we have,
|AZ-<J-2>| = Zaikakj + bikbkj = a:-j = |A:-j|, and
k=1
n
|BS™ | = Z airbrj + bikar; = bj; = | BY].
k=1
Clearly, |S<2?>| = |S’|. Hence we can find a bijection H : $<?> — S’ such that H(Afjb) =
Aj; and H(Bi§-2>) = Bj;. This bijection induces a homeomorphism h : ¥<2> 5 %Y given by

h(...(So, 51)(52, 83)...) = (...1'.1"(50J Sl)H(Sg, 83))
This gives us a parity-wise conjugacy. []

Definition 3.4. Strong shift equivalence is defined just as in section 2 but now the R; and
S; matrices can have entries of the form a + bt for nonnegative integers a and b.

We break the proof of Theorem 3.1 up into a series of lemmas. The presentation we give
follows the pattern of the proof of Theorem 2.2 given in [5, Theorem A.1], which the reader
will want to have on hand.

Lemma 3.5. If A and B are parity matrices with A = RS and B = SR, where R and S are
as in Definition 3.4, then (04,2 4,pa) is parity-wise topologically conjugate to (op,Xp,pn).
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Proof. See the second paragraph of the proof of Theorem A.1 in [5]. To check that the
conjugacy given there is parity-wise use our Lemma 3.3. O

By induction Lemma 3.5 gives the “if” direction of Theorem 3.1.

Lemma 3.6. If A is an n X n parity matriz then A is strong shift equivalent to a matriz
A’ whose entries are zeros, ones and t’s.

Proof. The proof so similar to the proof of Lemma A.2 in [5] that we merely note that one
replaces R;; on the bottom of page 99 with

1 if U; is on the edge emanating from V; and the edge is labeled +1,
R;; = ¢ t if U; is on the edge emanating from V; and the edge is labeled —1,
0 otherwise.

The reader should have no trouble reconstructing the details. [J

Lemma 3.7. Suppose A(t) is a n x n matriz of zeros, ones and t’s. Let k = Zij A (1),
the number of edges. Then A(t) is shift equivalent to a k x k matriz B(t) where each row
of B(t) has only zeros and ones or only zeros and t’s.

Proof. Tn the graph associated with A(f) number the edges by e(;_1),;, for the edge starting
at vertex 7 and ending on vertex j. Now renumber the edges e1, ..., ek, so as to preserve the
previous order. Let p give the label 1 of the edges.

Let R be the n x k matrix given by

R — 1 if ¢; emanates from v;,
71 0 otherwise.

Let S be the k£ x n matrix given by

1 ife; ends on v; and p(e;) =1,
Sij = t if e; ends on v; and p(e;) = —1,
0 otherwise.

It is easy to see that A = RS. The i-th row of R is a list of the edges emanating from v;, at
most one of which may end at v;. The edges which end at v; are listed according to their
parity in the j-th column of S. Since RS = 3", R;;Sk;, we have (RS);; = 0 if and only
if there is is an edge connecting v; and v;. It should also be clear that the parity carries
through correctly. Thus, A = RS.

Since each edge ends at only one vertex, each row of S will be all zeros except for a single
one or t. From this we can conclude that B = SR has the desired form. [

t
0

Example. Let A(t) = [ 1 ] Then R = [ ? ], and S = . Thus, we

11
0 0

~ O =
o~ O

get B(t) =

-~ O —
~ O —

0
[
0
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In the next lemma and in Section 4 will will use Markov partitions for homoemorphisms
of Cantor sets. See [5] for the definition. Let A(t) be a matrix of the form of Lemma 3.7. A
Markov partition of X4 can be constructed as follows. Let

ui = {a € Lalag = i}.

Then U = {u1, ..., ur} is the canonical Markov partition associated with A(t). We give U a
parity convention p : U — {£1} induced by noting that p on X 4 is constant on elements of
U.
Conversely, given a Markov partition and a parity convention an associated parity matrix

is given by

1 ifu;No(u;) #¢ and p(u;) =1,

Aij(U)y =< t  ifu;No(u;) # ¢ and p(u;) = —1,
0 otherwise.

One checks that given U, A(U) generates the same Markov partition it came from.

Definition 3.8. Let U and V' be Markov partitions of the same shift space. We say that
U refines V (denoted U > V) if each element of U is contained in an element of V. By
U NV we shall mean the Markov partition given by {R; N\ Rj|R; € U, R; € V}. We also let
U(m,n) denote the Markov partition given by ¢™(U) N ---N o™ (U), for integers m and n.

Lemma 3.9. Suppose U and V' are Markov partitions for (o, %, p) with associated matrices
A and B respectively. If U > V and either V(0,1) > U or V(=1,0) > U then there are
matrices R and S of zeros, ones and t’s, with A = SR and B = RS.

Proof. The proof is similar to Lemma A.3 of [5]. One must change the matrix Sg; on page
101 to

1 if¢#v. No(v) Cug and p(ug) = 1, where ug C vy,
Spi=+< t if¢#vNo(y) C u, and p(ug) = —1, where ug C v,
0 otherwise.

|

The remainder of the proof of Theorem 3.1 follows from induction. See [5].

4., MAIN THEOREM

Consider a one-dimensional basic set along with the local stable manifolds of the orbits.
Call such an object a ribbon set. For a flow on a 3-manifold a ribbon set would consist
of annuli, Mobius bands, and infinite strips. Two ribbon sets are topologically equivalent if
there is an orbit preserving homeomorphism between them that respects the flow direction.

A twist matrix A(¢) of a basic set is a parity matrix for a first return map of a cross
section, where the parity is determined by whether the map reverses or preserves orientation
on a given partition element. The Markov partition of the Cantor set must fine enough for
the parity to be uniform on each piece, but this can always be done. [5]

Two twist matrices are in the same twist-wise flow equivalence class if they can be realized
as twist matrices of topologically equivalent ribbon sets.

Theorem 4.1. If two twist matrices A(t) and B(t) are in the same twist-wise flow equi-
valence class then det(I — A(t)) = det(I — B(t)) mod (#* = 1).

We define three moves or relations on twist matrices.
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e The shift move: A(t) i, B(t) if
that A(t) = RS and B(t) = SR.
e The expansion move: A(t) ~ B(t) if

there exist matrices R and S as in section 3 such

0 ay1 -+ ain
aiy  ++ Qin 1 0
A(t) = and B(t) = 0 axn - am |
a1 AN Unn . . :
0 apn1 -+ ann

or vice versa. This notion was first introduced in [9].
e The twist move: A(?) L B(t) if

ayr  tajs - tay,

tasy  asy -+ aoy
B(t) = . . . )

tanl [£5:79) e Apn

where A(t) is the same as above. All we have done is multiplied the first row and
column of A(t) by t and used #* = 1.

The expansion and twist moves can be visualized on graphs as follows. In Figure la a
new vertex and edge labeled +1 have been inserted. This is expansion. In Figure 1b the
parity of the edges adjoining the vertex have all been flipped, except for the edge coming
back to its starting place. This is the twist move. We can apply the expansion and twist
moves to any vertex by first relabeling the vertices with shift moves.

We claim that the three relations, shift, expansion and twist, generate the twist-wise flow
equivalence relation and that det(7 — A(¢)) mod (? = 1) is invariant under them.

Lemma 4.2. The shift, expansion and twist moves leave det(I—A(t)) invariant mod (1% =
1).

Proof. Tf A(t) ~ B(t) then they have the same set of non-zero eigenvalues. Hence, det (7 —
A(t)) = det(I — B(t)). Let A(t) ~ B(t). Computing det(I — B(t)) along the first column
gives det(7 — B(t)) = (I — A(t))11 + det(I — A(t)) — (I — A(t))11, where (I — A(%))11 is the
(1,1) cofactor of T — A(¢). If we apply the twist move to I — A(¢) directly the result is still
I — B(t). Thus, det(I — B(t)) = t*det(I — A(t)) = det(] — A(t)), modulo t? = 1. [J

Lemma 4.3. Two twist matrices are in the same twist-wise flow equivalence class if and
only if they can be connected by a finite sequence of shift, expansion and twist moves.

Proof. Theorem 3.1 shows that applying the shift move does not alter the twist-wise flow
equivalence class. In the expansion case 1t is clear from Figure la that the underlying one-
dimensional flow (the inverse limit of the semi-flow on the graph) is unchanged. For the twist
move think of the one-dimensional flow as a basic set embedded in a flow on a manifold.
The local stable manifolds form a ribbon set. The twist move can be realized as an isotopy
of the ribbon set, as Figure 2 tries to show, so twist-wise topological flow equivalence is
preserved.

For the converse we consider the self-homeomorphism of a Cantor set cross section given
by the first return map of a basic set. Let C' = C7 U Cy be a open-closed decomposition of
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a Cantor set C' and let f : C' = C be a homeomorphism. The expansion along C is defined
as follows. Let i : C1 — Cf be an identification between C; and a copy C} of C;. Let
C' = C1 UC) UCy be a disjoint union. Define f': C' — C' by ion Cy, foi~! on Cf and f
on Cy. See Figure 3. For a twist matrix A(¢) of zeros, ones and ¢’s, using the vertex shift,
expansion along the block {---.1---} gives the subshift corresponding to the expansion of
A. Using the edge shift for A(t) with parity, expansion corresponds to expansion along
U{--- .k---} over k where edge k emanates from vertex 1. The new first edge has parity
+1

Suppose the orientation of f on Cy is constant. Reversing the orientation assigned to Cy
will be called twisting Cy. If we twist the block {---.1---} of a subshift with parity given
by A(t) the resulting subshift with parity corresponds to the subshift with parity associated
to the matrix resulting from applying the twist move to A(t).

Suppose then that A(t) and B(t) are twist-wise equivalent. We can then regard them as
arising from partitions of different cross sections of the same underlying flow, ¢;.

Let C4 and Cp be Cantor set cross sections corresponding to A and B respectively. Since
C4 and Cp are zero-dimensional we can take them to be disjoint.

Let Ca, be the subset of C'4 that meets C'p under ¢; before coming back to C'4. Let Cy,
be the subset of C'4 that passes through Cy4 exactly once before meeting Cg. Continuing
this until we exhaust C'4 allows us to write Cy = Cyq, U---U Cy,, a finite disjoint union,
where C4, is the subset of C4 that passes through C4 exactly ¢ times before meeting Cp.

Likewise partition Cg = Cg, U---U Cp,, , but where Cp, is the subset of Cp exactly i
times before meeting C'y under the reverse flow ¢_;.

We can now make Markov partitions for C'4 and Cp that are refinements of the partitions
just described, such that the parity matrices A’ and B’ of these Markov partitions induced
by the flow have only zeros, ones and t’s as entries. It is clear that A’ and B’ are parity-wise
topologically conjugate to A and B respectively.

Now we use twist moves to “comb out” any twisting between the layers of C'4 and Cp.
If the map induced by the flow reverses orientation between a partition element C'y4,; in C'4,
and one in C'4, then apply the twist move to the offending partition element of C4,. If need
be we first refine C'4,, so that only the twisted edge emanates from it. This pushes the twist
to the left in Figure 4. With repeated applications all twisting between the layers of C'y can
be combed to the far left. Likewise we comb out all twisting between layers of C'p to the
far right.

We momentarily regard C'4 UC'p as a single cross section. If there is any twisting between
Ca, and Cp,, push it away, say to the far right.

Now apply (reverse) expansion moves to collapse C'a to C4, and Cp to Cp,. But Cg,
is just a forward translate of C'4,. Thus the A’ and B’ matrices, and hence A and B, are in
the same twist-wise flow equivalence class. [0

Lemmas 4.2 and 4.3 combine to prove Theorem 4.1.

5. TEMPLATES

A template 1s a smooth branched 2-manifold which supports a semi-flow. For a Smale
flow on a 3-manifold nontrivial basic sets can be modeled by templates in the following
sense. The inverse limit of the semi-flow of the template recovers the basic set. Further, any
finite link of closed orbits in the basic set is ambient isotopic to a corresponding link on the
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template. Also, the twisting in the local stable manifolds is preserved in the twisting of the
bands of the template. The foundations of template theory are in [1, 2]. Also see [8§].
The Figure 5a is the Lorenz template and Figure 5b is called the Horseshoe template.

. . o . T |
The classification theorem of [7] depends only on an incidence matrix which is [ 11 ] for

both these templates. However, the twist matrix is [ } 1 ] for the Lorenz template and

[ 1 715 ] for the Horseshoe template. Thus, det(7 — A(t)) is —1 for the Lorenz template and
—t for the Horseshoe, and they are distinguished. More generally, consider a template with
a single branch line with n bands emenating form it. Each bands loops back and streches
over the entire branch line. So, the dynamics of a return map are a full shift on n symbols.
Suppose k of the bands have a even number of half twists while | = n — k& have an odd
number of have twists. Then the twist matrix is

1 o 1

|

.t
Lt -t

Thus, the full Parry-Sullivan invariant is 1 — k — [t. However, the template in Figure 5c,
though unorientable, has the same invariant as the Lorenz template, —1.

Note added. The set {1,¢} under multiplication modulo t?> = 1, is of course a group
isomorphic to Zs. The entries of the parity matrix are just elements of the group ring ZZs.
The only properties of Zs used in Section 3 were group properties. Hence the definitions are
meaningful and the analogous results hold true for any group, G. If G is Abelian then an
analog of the Parry-Sullivan invariant should hold as well. Here however, one has to replace
the twist move with a g-move for each nonidentity element ¢ € G consisting of multiplying

the first row of the matrix by g and the first column by g~ '.
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