FLOWS WITH KNOTTED CLOSED ORBITS
JOHN FRANKS AND MICHAEL C. SULLIVAN

ABSTRACT. We survey results concerning dynamics of flows on S* with
special attention to the relationship between dynamical invariants and
invariants of geometric topology.

1. INTRODUCTION

One of the key objects of study in the field of dynamical systems is the
topological structure of the solutions of ordinary differential equations. For-
mally we can think of an action of the real numbers R on a manifold and
one wants to study the topology of the orbits of this action. All such orbits
are either injectively immersed copies of R or embedded copies of S'. The
latter are called periodic orbits since if we consider the flow

b MM

where t € R and M is the manifold on which the flow lives then a point
xz € M (sometimes called an initial condition) lies on a periodic orbit if and
only if ¢4, (z) = z for some ¢y € R. An orbit of a flow is compact if and only
if it is periodic.

From a classical differential equations point of view (though probably
not from the topologist’s viewpoint) the most useful manifolds on which to
investigate flows are Euclidean spaces R", or perhaps the sphere S™ if it is
particularly helpful to be in a compact setting.

An area where this classical setting intersects a rich topological environ-
ment is the study of flows on S3 or R? where periodic orbits can be knotted
or linked. We can then ask what knot types occur as periodic orbits of a
given flow (or of any flow) as well as numerous other natural questions re-
lating the dynamics of a flow to the topology of the knots and links which
occur as closed orbits of it.

2. FLows IN BOXES

We begin by describing a very simple but remarkably rich construction
(introduced by Birman and Williams [2]) to produce examples of flows with
many knotted orbits. We will see that this is much more than a method
of producing examples, however. Indeed, the behavior exhibited in these
examples occurs quite generally in flows on S3.

Date: January 7, 1999.



2 JOHN FRANKS AND MICHAEL C. SULLIVAN

We want to build simple examples of flows on subsets of S3. Here is a
trivial example, but one which is important as a building block. Consider
the cube, or box, B = I x I x I where I = [—1,1] which we parameterize
by (z,y,s) with z,y,s € I. We consider the “flow” on B whose orbits are
the line segments (z,y,s),s € I. We orient the orbits in the direction of
decreasing s. And we specify a constant speed of 2 so an orbit will enter a
box and remain for one unit of time before exiting. Formally ®;(z,y,s) =
(z,y,s — 2t). Strictly speaking this is not a flow because the orbits will exit
B after a finite amount of time (both positively and negatively).

Conceptually we think of orbits entering B at the top (s = 1), flowing
downward and exiting at the bottom (s = —1). On the sides of B the orbits
lie in the boundary. This is not a very interesting example as it stands, but
we can construct very interesting examples by using multiple copies of B
as building blocks and attaching parts of the bottom faces of one cube to
the top faces of another. It is better to refer to entering or exiting faces
rather than top or bottom faces, because we will want to embed collections
of attached cubes in R? or S® in complicated ways for which “top” and
“bottom” may not be useful descriptions.

When we attach part of the exiting face of one box to part of the entering
face of another we will, of course assume that the orbit segments exiting
the first at a point of attachment immediately enter the second forming a
longer orbit segment crossing both boxes. We will only allow attachments of
a very special form. In particular, we will make identifications using affine
maps of faces which preserve the line segments in the faces parallel to the z
and y axes. That is, a point (z,y,—1) in the exiting region of box B; may
be identified with its image under an affine map, (Az + ag, A "'y + by, 1), in
the entering region of box By provided |A| > 1 and the image under this
affine map of the exiting region intersects the entering region as shown in
Figure 1.

r(©)

C

FIGURE 1. The affine attaching map r
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In particular the affine map, which we will denote r(z,y), must satisfy
r(z,y) = (A + ag, A1y + by) where

A+ag] > 1
| —A+ag] > 1
A l4b < 1
| =X 4| < 1

so that if C = I x I, the image under this map of C' goes completely across
C in the direction parallel to the z-axis, but in the direction parallel to the
y-axis C goes completely across the image of C under this affine map.

Parts of one exiting region may be attached to more than one entering
region of one or more than one box. The regions of attachment for all enter-
ing and exiting faces must be disjoint. See Figure 2. Different attachments
are permitted to use different affine maps but they must all have the form
above. In particular different choices of A are permitted, but the coefficient
of z (i.e. A) must always have absolute value greater than one and, as a
consequence, the coefficient of y (i.e. A~!) will have absolute value less than
one.

FI1GURE 2. Attached boxes

In order to make interesting examples of flows on regions made up of
boxes with these kinds of identifications we will need to make attachments
that form a “cycle” of boxes, so it is possible for an orbit to leave a box B,
pass through others, then return to B. Clearly this is necessary if we are
to create a periodic orbit. It is not difficult to see that if we form a simple
cycle of boxes like that in Figure 3 then there will be a single periodic orbit.
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It is also not difficult to see that every other orbit in the boxes depicted in
Figure 3 will eventually exit the boxes in one direction or the other.

FIGURE 3. Two boxes, one closed orbit

The easiest way to demonstrate these facts is to consider the “return
map” defined on (part of) one of the entering faces. Let C' be one of these
entering faces and let Dy represent the subset of points in C' which will
return to C' when the (positively oriented) orbit through them is followed,
and denote by Ry the points to which we return. See Figure 4. Then this
return map r : Dy — Ry is an affine map of the type described above for
attachments. Indeed it is just the composition of the affine maps for the
attachments through which an orbit passes.

From the form of this affine map it is easy to see that r has a unique
fixed point, say (xo,yo). Moreover, the only points (z,y) for which r™(z,y)
is defined for all n > 0 are those with £ = z(¢ while the only points for which
r"™(x,y) is defined for all n < 0 are those with y = y. Clearly the fixed point
of r corresponds to a periodic orbit and any other periodic orbit (if there
were any) would correspond to a periodic point of the map r.

We want now to investigate an analogous object but one which is more
complicated than a simple cycle. Assume we have n boxes Bj ... B, with
multiple attachments of the type described above. We will encode the box
attachments in a matrix called the transition matrix A. We define it by
setting A;; equal to the number of attachments of the exiting face of B; to
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C D,

FIGURE 4

the entering face of B;. The arrangement of these attachments is important,

but for the moment we will ignore it. The boxes must be embedded in

R3 in such a way as to realize the attachments and this requires that the

embeddings be highly non-linear. In particular, it is perfectly legitimate for

the exiting face of a box to be attached to the entering face of the same box.
Note that the transition matrix for our simple cycle in Figure 3 is

(1)

while the one for the attached boxes shown in Figure 5 is

A:<}é)

Given a collection of boxes attached as described above with transition
matrix A we want to investigate the collection of orbits which never exit
the boxes in either direction. If we denote this set of points by {2 then it
is easy to see that it is a compact set in the interior of the boxes which is
invariant under the flow v, : © — Q whose orbits locally (in one box) are the
arcs given by holding z and y fixed and varying t in the box co-ordinates.
The orbits of this flow are parameterized so that ¥ (x,y,t0) = (x,y,to — t)
whenever (z,y,t9) and (x,y,ty — t) are in the same box.

Definition 2.1. The flow ¥y : Q — Q described above will be called the
boxed flow associated to the collection of embedded bozxes.

We will investigate this flow by considering a “return map” similar to the
one described above. The name is perhaps not the best since typically points
do not return under just one iteration of the map (unless the exiting face is
attached to the entering face of the same box). The difference between this
map and the return map discussed before is that now if there are n boxes in
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a)
B,~ {'l}

| S B,*{1}

FIGURE 5. Another two-box flow, (a) the first return map,
(b) side view of boxes.

our construct we will consider the return map r to be defined on a subset of
the union of all entering faces and having values in a different subset of the
union of all entering faces. More precisely, if z is in an entering face, say of
box B;, then r(x) is defined provided the (positively oriented) orbit through
z exits B; in a region of attachment and immediately enters another box,
say Bj. The value of r(z) is the point in the entering face of B; which is the
first point of this box on the positive orbit segment starting at z.

The subset of an entering face on which r is defined will in general have
several components each of which will be a rectangle entirely crossing that
face in the direction parallel to the y-axis, like Dy in Figure 4. The image of
r in each entering face will in general consist of several components each of
which will be a rectangle entirely crossing that face in the direction parallel
to the z-axis, like Ry in Figure 4. Since the transition matrix A was defined
by letting A;; equal the number of attachments of box B; to Bj it is clear
that A;; of the components of the domain of r in the entering face of B; will
be mapped by r to A;; of the components of the image of 7 in the entering
face of B;. We will denote these domain components by D;;(k) and the range
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components by R;;(k), where 1 < k < A;;. Note then that the restriction
r : D;j(k) = R;;(k) is an affine map which expands the horizontal or z
component and contracts the vertical or y component.

Let D denote the union of all the domain components, i.e. the full domain
of r and let

Then r : A — A is a homeomorphism (assuming A is non-empty).

Each point in A has an associated forward and backward “itinerary.”
This is just the sequence of rectangles D;;(k) through which the trajectory
of the point travels. More formally the the forward itinerary of a point

z € A is the sequence dy,d;,ds, ... where d, is the element of the collection
{D;j(k)} which contains r"(z). The backward itinerary of a point z € A is
defined similarly as the sequence ...,d_s,d_1,dy where d,, is the element of

the collection {D;;(k)} which contains 7"(z). Combining the two provides
the complete itinerary ...,d_o,d_1,dy,dy,ds,... of the point z.

Lemma 2.2. Suppose z = (xg,y0,1) € A is in the entering face of B;. Then
the set of (z,y,1) € B; with the same forward itinerary as z is

{(z0,9,1) | y € [-1,1]},

i.e. it is the interval in the entering face of B; which passes through z and
is parallel to the y-axis. Likewise the set of (x,y,1) € B; with the same
backward itinerary as z is {(z,y0,1) | z € [—1,1]}. Moreover, if two points
in A have the same forward (backward) itinerary then the distance between
the images of these points under Uy tends to 0 ast — oo (t = —o0). These
line segments with the same forward (resp. backward) itinerary are called
local stable manifolds, (resp. local unstable manifolds).

Proof. The affine attaching maps described above contract each line segment
parallel to the y-axis by a factor of A™! and expand each line segment parallel
to the z-axis by a factor of . It follows that if z; = (x,y,1) the distance
between r"(z) and r"(z1) is A ™|y —yo|. Hence r™(z1) is defined for alln > 0
and z and z; have the same forward itinerary.

Conversely if zo = (x,y, 1) is in the entering face of B; and has the same
forward itinerary as z then the distance between r"(z) and r™(z3) is greater
than A"|z — zo|. Since this distance must be bounded independent of n we
can conclude that z = xy.

From the fact that ||7™(2) —r"(z1)|| < A7"|y — yo| if follows that ||¥(z) —
U(z1)|| tends to 0 as t — oc.

A similar proof shows that points with backward itinerary equal to that
of z are the interval specified and that the distance between such points
tends to zero under ¥; as t — —oo. O
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We can also start with a possible itinerary and show that there are points
which realize it. An allowable sequence ...,d—_o,d_1,dy,dy,do,... of ele-
ments of the collection {D;;(k)} is one for which r(dy) intersects dn41 for
all n € Z. Forward and backward allowable sequences are defined similarly.

Clearly a necessary condition for a sequence to be a complete itinerary is
that it be an allowable sequence, since if 7(d,,) Nd,+1 = 0 there are no points
whose trajectories enter one box through d, and the next box through d,, 1.
The next lemma asserts that this is also a sufficient condition.

Lemma 2.3. Suppose that ...,d_o,d_1,dy,d1,ds,... is an allowable se-
quence of elements of the collection {D;;(k)} with dy C B;. Then the set of
points in the entering face of B; with forward itinerary do,d1,do, ... is non-
empty and consists of the line segment {(zo,y,1) | y € [-1,1]}, for some
fized xzo. Similarly the set of points in the entering face of B; with back-
ward itinerary ...,d_9,d_1,dy is a line segment of the form {(z,yo,1) | x €
[—1,1]} for some yo. And the set of points in the entering face of B; with
complete itinerary ...,d_9,d_1,dy,d1,dso, ... is the single point (xg,yo,1).

Proof. By induction on n it is not difficult to see that
n
W= (r (i) ={z | r'(z) €d;,0 <i <n}
1=0

is a rectangle in dg of the form [a, b]x[—1, 1] whose width b—a is 2" L. (The
width of dg is 2A~1.) Tt then follows that the set of points in the entering face

of B; with forward itinerary dg, dq,ds, ... is ﬂzozo W,, which is a line segment
of the form {(zo,y,1) | y € [-1,1]}. A similar argument shows that the set of
points with backward itinerary ...,d_o,d_1,dj is a line segment of the form

{(z,y0,1) | z € [-1,1]} for some yp. The set of points in in the entering
face of B; with complete itinerary ...,d_o,d_1,dp,d1,ds,... must be the
intersection of these two line segments, namely the point (zg,yo, 1). O

Clearly the itinerary sequences associated to a point in A give a great
deal of information about the point. It has proven extremely valuable to
abstract this concept and consider the “symbolic dynamics” associated with
a transition matrix A which we describe in the next section.

It is interesting that (as we shall see) a complete topological description
of A and the homeomorphism r depends only on the matrix A! As a conse-
quence the topological type of the set of orbits which remain always in the
boxes depends only on this matrix. But it is important to note that while
A determines the abstract topological type of this space it says very little
about the embedding of this space in R? or $3. It is really this embedding
that is the subject of this article. And just as S' is a rather simple topo-
logical object with a very rich class of embeddings in S3, it is also the case
that as abstract topological objects the flows we have described above are
well understood, but their embeddings in S? are far from understood.

The flows described in this section may seem to be of a rather special
nature, and to some extent that is true. Nevertheless, the exhibit very



FLOWS WITH KNOTTED CLOSED ORBITS 9

typical behavior. In [12], for example, it is shown that for any smooth
flow on R? with a compact invariant set having positive topological entropy
there is an invariant subset on which the flow is qualitatively equivalent to a
boxed flow in a sense we define in the next section (topological equivalence).
A definition of topological entropy can be found in [20]. It is a numerical
invariant of the topological complexity of a flow.

3. ABSTRACT SYMBOLIC DYNAMICS

In this section we give an abstract “symbolic” description of a class of
flows and then show that any boxed flow is topologically equivalent to such
a flow. Of course, we must first specify our notion of equivalence.

Definition 3.1. Two flows ¢y : X — X and ¢y :' Y — Y are called topo-
logically equivalent provided there is a homeomorphism H : X — Y
carrying orbits of ¢y onto orbits of 1. The flows are called topologically

conjugate provided for every t and every © € X the equation H(pi(x)) =
P (H(z)) is satisfied.

Both of these are equivalence relations. From a topological point of view
topological equivalence is the more appropriate notion and we will focus
largely on it. Topological conjugacy is generally too rigid for our purposes.
For example, the numerical value of the period of each periodic orbit is easily
seen to be an invariant of topological conjugacy, from which it follows that
there are uncountably many different equivalence classes.

Let A be an n X n matrix of non-negative integers. We construct a finite
graph I' with oriented edges as follows. I' has n vertices numbered 1 to
n and [' has A;; oriented edges running from vertex 7 to vertex j. Each
edge is assumed to have unit length. We will denote these oriented edges by
eij(k),1 <k < A;; and denote by E the set of all edges.

We want to consider the set of bi-infinite sequences of edges and give it a
topology. If the finite set E is given the discrete topology and we give the
product topology to

o
I[ 2=F*
1=—00
then this space is compact, totally disconnected and perfect (assuming E
has more than one element) and hence can be shown to be homeomorphic
to a Cantor set.

We are interested in a subset of this space of bi-infinite sequences of edges.
We will denote by ¥4 the subset of elements {a;};cz with the property
that for each ¢ the edge a; of I' ends in the vertex where a;+1 begins. In
other words a; = epq(k) and a;+1 = eq (k') for some choices of p, g, 7,k and
k'. Thus, subset ¥4 consists of precisely those sequences of oriented edges
which could be traced out by an infinite continuous path on the graph which
always respected the orientation.
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The fact that F is a set of edges of a graph is only of heuristic importance
and we could equally well consider ¥ 4 as bi-infinite sequences of “symbols”
satisfying a finite collection of combinatorial rules about which symbols are
allowed to follow which other symbols.

It is a straightforward exercise to show that ¥4 is a closed (and hence
compact) subset of EZ.

Introducing some dynamics, we define the map

O:X4— 24

by o({ai}) = {b;} where b; = a;_1. The map o is called the subshift of
finite type based on the matrix A. It is a shift because it simply shifts the
bi-infinite sequences of symbols one place to the left. If any symbol were
allowed to follow any other (i.e. If the matrix A is a nonzero 1 x 1 matrix
and hence any symbol is allowed to follow any other symbol) then o is called
a full shift. The “finite type” part of the name refers to the fact that there
are finitely many rules (encoded in the matrix A) about which symbols may
follow which other symbols. It is straightforward to see that ¢ is continuous
and we can immediately exhibit its inverse (shifting to the right), so it is a
homeomorphism.

There is an alternate description of 34 which will be useful for us. Let T’
be the graph associated to A as described above with path metric assigning
unit length to each edge. Let ¥ be the space of maps from R to I' which
preserve arc length and take integers in R to vertices of I'. We give this
space the compact-open topology.

It is easy to see that the map from ¥ to ¥4 obtained by associating to
each path of ¥ the bi-infinite sequence of edges through which it passes, is a
homeomorphism. More precisely if a(t) is an element of ¥ we define h(a(t))
to be the sequence {a;}icz with the property that for each i the edge of T’
containing «(i + 1/2) is a;. Then h is a homeomorphism. Also it is clear
that the shift map on ¥ is given by o(a)(t) = a(t + 1), or more precisely h
is a topological conjugacy from o : ¥4 - Y too: X — 2.

The most thoroughly studied subshifts of finite type are those which are
irreducible. A subshift of finite type is called irreducible if the graph T’
described above has the property that given any two vertices on it there is
an oriented path joining them. In terms of the matrix A this is equivalent
to asserting that there are no i and j such that the ij** entry of A" is zero
for all n > 0.

A great deal is known about irreducible subshifts of finite type. See [18],
for example. We mention only that any irreducible subshift of finite type
has a dense orbit and has a dense set of periodic points.

Associated to a subshift of finite type o : ¥4 — ¥4 we can construct an
abstract flow. The construction we use is called the “mapping torus” by
topologists, but unfortunately is called the “suspension” by dynamicists.

Let X 4 be the quotient space of X 4 xR under the identification (o(x), s) ~
(z,s + 1). Equivalently, let X4 be the quotient space of ¥4 X [0,1] under



FLOWS WITH KNOTTED CLOSED ORBITS 11

the identification (z,1) ~ (o(z),0). The first of these descriptions is better
for describing the flow ¢; on X, because this flow is simply the quotient of
the flow @; defined on ¥4 x R by ®;(z,s) = (z,s + t).

In terms of the description of the subshift of finite type as the space of
maps from R to the graph IT" associated to the matrix A, this flow also has
a nice description. Recall that the subshift map o is defined on the space
Y. of arc-length preserving paths mapping R to I" which take integers to
vertices by o(a)(s) = a(s + 1). If we let A denote the space of arc-length
preserving paths mapping R to I which are consistent with the orientations
of the edges of I' and give A the compact-open topology, then the mapping
torus flow defined above is topologically conjugate to the flow on A given by
®i(a)(s) = a(s +1).

Because of the analogous properties for the subshift of finite type o, when-
ever the matrix A is irreducible the flow ¢; on X4 has a dense orbit and a
dense set of periodic orbits.

Proposition 3.2. A bozed flow 1, with transition matriz A is topologically
equivalent to the mapping torus flow of the subshift of finite type o : %4 —
3A.

Proof. In fact something stronger is true. The boxed flow ; with transi-
tion matrix A as described above and the mapping torus flow ¢; on X4
constructed from the subshift of finite type o : ¥4 — X 4, are topologically
conjugate.

Recall from §2 that the ij entry of the transition matrix A equals the
number of components of the attaching region of the exiting face of box B;
with the entering face of box B;. Thus if we use the matrix A to construct
a graph I' and the corresponding subshift of finite type o : ¥4 — ¥4, then
the vertices of I' are in one-to-one correspondence with the boxes {B;} and
the edges from vertex i to vertex j are in one-to-one correspondence with
the components of the attaching region of the exiting face of box B; with
the entering face of box B;.

Then if ¥; : Q — Q is the boxed flow, this gives us a map h : Q@ — A which
is a conjugacy from the boxed flow to the mapping torus flow for the subshift
of finite type. It is defined by first considering the map 5 : Q@ — I' which
assigns to the point (z,y,s) € B; the point on the edge of I' corresponding
to the region where the orbit of (z,y,s) exits B; and whose distance from
the beginning of that edge is (1 — s)/2. That is, its position on that edge
proportional to its distance from the entering region in B;.

Then the conjugacy h is defined using the compact-open path space de-
scription of the mapping torus flow. To a point z € 2 we first consider its
orbit {¥;(2)} in 2 and then obtain a path in I'. This path is arc-length
preserving and hence an element of A the space of arc-length preserving
infinite paths (which is given the compact-open topology). More precisely,
h(z) = a(t) where «(t) is the path j(¥;(z)) in . It is immediate that

h(¥s(2)) = alt + 5) = ®s(a) = 4(h(2))
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so h is a conjugacy.

It is straightforward to show that A is continuous. It is only necessary to
check that h is one-to-one and onto, i.e. invertible, since 2 and A are both
compact. Given an element «(t) € A we wish to find h~!(a). We can obtain
the point a(0) € T', and from the edge of I' we know the B; which must
contain h~1(a). Also, if s is the distance of «(0) from the start of its edge,
then h~!(a) = (x0,%0,1 — 2s) for some zy and yo in the co-ordinates of the
box B;. The fact that such an zy and yg exist and are unique can be shown
as follows.

The fact that the edges of G are in one-to-one correspondence with the
attaching regions of the exiting and entering faces of the boxes and the fact
that each such attaching region is a subset of one of the domain components
{D;;(k)} means that to the path a(t) we can associate an allowable sequence
...,d_9,d_1,dy,dq,ds, ..., where each d; is one of the domain components
{D;;(k)} and they occur in the order in which the path «(t) crosses the
corresponding edges of I'.

According to Lemma 2.3 there is a unique point zy = (zo,yo, 1) in the
entering face of B; with this itinerary. By construction h(zp)(¢) is a path in
G starting at the beginning of the edge containing «(0) and following the
same sequence of edges as a. Then h(z)(s) = a(0) so h(z)(t) = a(t — s).
From this it is clear that h(¥4(z)) = a(t) and that ¥4(z) is the unique point
with this property. O

A corollary of this result and its proof is the following.

Proposition 3.3. Orbits of a bozed flow 1, with transition matriz A are in
one-to-one correspondence with orbits of the subshift of finite type o : X4 —
Ya. In particular, periodic orbits of ¥ correspond to periodic orbits of o
(or, equivalently, to periodic allowable sequences of symbols associated with

).

Rather surprisingly, if we are only interested in classifying boxed flows up
to topological equivalence there is a complete and easily computed answer
given by the following theorem. We emphasize that this is only for classifi-
cation up to topological equivalence; the analogous question for topological
conjugacy is much more subtle (see [28] or [18]).

Theorem 3.4. (Franks [11]) Suppose A and B are square, non-negative,
integer matrices which are irreducible and ¥ and ® are the mapping torus
flows of the corresponding subshifts of finite type. Then necessary and suf-
ficient conditions that these flows be topologically equivalent are that

det(I — A) = det(I — B)
and
" /(I -A)Z"=7Z"/(I -B)Z™,

where n and m are the size of A and B respectively.
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Despite the fact that as abstract topological flows we can easily classify
boxed flows up to topological equivalence, many problems remain if we try
to understand how they are situated in three dimensional space. It is the
pursuit of some understanding of these embeddings that the next section
considers.

4. TEMPLATES

In the previous sections we described “boxed flows,” a class of flows de-
fined on subsets of R3 (but which could be easily extended to flows on all
of R?). In this section we want to begin the study of how these subsets are
embedded. In particular any closed orbit of a flow on R? is a knot and any
finite set of closed orbits is a link. One of our long range objectives is the
study of the relationship between dynamics and the knot types of periodic
orbits.

It turns out that the union of the boxes in a boxed flow is not as concep-
tually simple for describing a flow as another construct called a “template”
which we now describe.

Definition 4.1. The template associated with a bozed flow @, correspond-
ing to the union of boxes X = UB; is the quotient space L of X formed by
collapsing each of the boxes B; making up X to a rectangle by identifying any
two points in B; of the form (z,y1,t) with (x,y2,t). There is a well defined
semi-flow ¢, induced by ®, because any two points which are identified are
carried by ®s to two points which are identified for all the values of s for
which ®4(x,y;,t) is defined.

Note that two points in X are identified in forming L if and only if they
are in the same box B; and they have the same forward itinerary. This is
because we saw in Lemma 2.2 that the line segments we are collapsing to
points are precisely the local stable manifolds consisting of points with the
same forward itinerary.

The semi-flow ¢s induced by @, is only “semi” because it cannot in general
be inverted, i.e. it is a semi-group action of R rather than an action of R
on the compact set of points on which ¢, is defined for all positive s.

Definition 4.2. The dual template associated with a bozxed flow ®4 cor-
responding to the union of bozes X = UB; is the template of the inverse
flow. Equivalently, it is the quotient space L of X formed by collapsing each
of the bozxes B; making up X to a rectangle by identifying any two points in
B; of the form (z1,y,t) with (z2,y,t).

It is important to note that a boxed flow, by definition, includes an em-
bedding of its boxes in R3 or S3. Thus if L is the template (or dual template)
associated with a boxed flow then one can embed L in R3 or $2 in such a
way that each point z of L lies in the interval in UB; which is collapsed to
form z. Any two embeddings of L with this property are isotopic and any
of them will be called an embedding of L associated to the boxed flow.
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The following result is a special case of a result of Birman and Williams
[2]. Tt tells us that understanding the closed orbits of a boxed flow in R3
is equivalent to understanding the closed orbits of the associated embedded
template semi-flow.

Theorem 4.3. There is a one-to-one correspondence between the periodic
orbits of a bozed flow and the periodic orbits of the induced semi-flow on the
associated embedded template. Moreover, closed orbits paired by this cor-
respondence are isotopic as embedded circles and finite sets of closed orbits
matched by this correspondence are isotopic as links (embedded finite disjoint
unions of circles).

Proof. If h : X — L is the quotient map defining L then h is a semi-
conjugacy. That is, h o ®; = ¢ o h for all ¢ > 0. It follows that if vy is a
closed orbit of ®; then h(7y) is a closed orbit of ¢;.

Conversely, if vy is a closed orbit of ¢; then h=!(y) is a bundle over
~o whose fiber is an interval. This bundle (either an annulus or a Mobius
strip) is invariant under the flow ®; and this flow preserves and contracts
the fibers. If ¢ is the period of v then @4, is a contraction map of each fiber
to itself and hence has a unique fixed point. The collection of these fixed
points is a (unique) closed orbit 7y of period ty for ® which is mapped by A
to Y0-

If L has an embedding associated with the flow, then for any point z of
0 there is precisely one point a(z) in h~1(z) N~y. Sliding the point a(z)
along the interval h~1(z) to z, for all points z € 7y simultaneously, defines
an isotopy from vy to 7. O

5. KNOTS AND LINKS

A knot k is an embedding of S! into S® (or R?), k : S — S3. We are
only interested in smooth embeddings. A knot may be given an orientation
or preferred direction. We will always use a flow to induce an orientation on
our knots. It is a common abuse of notation to use the same symbol for a
knot k and its image k(S') C S3. A link of n components is an embedding
of n disjoint copies of S.

Two knots k1 and ke (or two links) are equivalent if there is an isotopy
of S3 that takes k; to ko. When we talk about a knot we almost always
mean its equivalence class, or knot type. Detecting knot equivalence is the
primary goal of knot theory.

In order to publish papers about knots, knot theorists have developed
the knot diagram. This is just a projection of a knot or link into a plane
such that any crossings are transverse. The crossings are then labeled as
positive or negative. See Figure 6 for the convention used here. If a knot
has a diagram with no crossings then it is called an unknot or less formally
a trivial knot.

Suppose we have a knot diagram for £ and we have parameterized the
planar curve. If, using polar coordinates, df/dt > 0 for all ¢, then we
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FIGURE 6. (a) a positive crossing, (b) a negative crossing

say that the diagram represents a braiding of k or that k is in braid form.
Figure 7 shows two knot diagrams for the figure-8 knot, only one of which is
braided. The reader is encouraged to demonstrate the equivalence. It is well
known that any smooth knot or link is equivalent to a braid [6, Chapter 10].
In fact templates themselves can be braided, meaning that all the closed
orbits are braided simultaneously [12]. If a knot k has a braid presentation
in which all the crossings are positive then k is called a positive braid. Note:
there exist knots which are not positive braids, but that can be presented
by diagrams with only positive crossings [27].

6\

J

FI1GURE 7. The figure-8 knot.

Though a practical algorithm for detecting knot equivalence is not known,
there are many useful invariants. One of special interest to us is the genus
of a knot or link. Every link forms the boundary of an embedded orientable
surface, called a Seifert surface [6]. Abstractly we can attach a disk along
each boundary component of a Seifert surface, that is along each component
of the link, producing a closed surface. The genus of the link is then defined
to be the minimum genus over all such closed surfaces.

If a knot is in braid form there are formulas which allow us to compute,
or at least estimate, the genus.
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Proposition 5.1. (Bennequin [1]) Let k be a knot with genus g. Suppose
k has a braid presentation on s strands with c4 positive crossings and c—
negative crossings. Then |c; —c_| —s+1<2g <|cy +c_|—s+1.

A similar result holds for links. If the braid presentation of k is positive,
then we have 29 = ¢ — s+ 1, (¢ = c4) a fact that was proved independently
in [3].

Given a two-component link ki U ko, the linking number of ki with ko is
the sum of the signs of each crossing of k1 under k9 and is denoted [k(k1, k2).
The linking number is a link invariant. If the components of a link [ can
be separated by a 2-sphere that misses the link, then we say that [ is a
split link. For a two-component link [ = k; U ko9, being a split link implies
lk(k1,ke) = 0, though the converse is false.

The last item from knot theory we review is the notion of primeness. A
knot k C S® is composite if there exists a smooth 2-sphere S? such that
S? Nk is just two points p and ¢, and if v is any arc on S? joining p to ¢
then the knots

ki =~ U (kN outside of $?) and

ky = yU (kN inside of S?),

are each nontrivial, (i.e. not the unknot). We call k; and ko factors of k
and write

k = ki #ko.

We call k the connected sum of k1 and ko. If a nontrivial knot is not com-
posite, then it is prime.

Figure 8 gives an example. It shows how to factor the square knot into
two trefoils. Trefoils are prime. It was shown by Schubert [6, Chapter 5]
that any knot can be factored uniquely into primes, up to order. Note: the
unknot serves as a unit.

& &

Left-hand Trefail Right-hand Trefoil Square Knot
Prime Prime Composite

F1GURE 8. The square knot is the sum of two trefoils.
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6. THE LORENZ TEMPLATE

Perhaps the simplest example of a template is the Lorenz Template. Tt
is shown in Figure 9. It was developed by Williams as a naive model of
the strange attractor apparently associated with the Lorenz equations, a
3 X 3 ODE used to study turbulent flows. See [2] and the references cited
there. Although it remains unknown whether the Lorenz equations define a
“Lorenz type” attractor, the existence of such attractors has been confirmed
in various families of differential equations. For a brief history of this work
see [20, §7.11.2] and the recent paper [8].

It is worth pointing out that boxed flows are saddle sets and not attractors.
A boxed flow that would be modeled by the Lorenz template would have

transition matrix
11
1 1)

The reader may wish to consider how one might embed two boxes in
R? with ends attached as prescribed by this matrix in such a way that
the associated template is essentially the one shown in Figure 9. (In this
figure the corners on the edges of the template have been trimmed a bit for
simplicity.)

F1GURE 9. The Lorenz template with a trefoil orbit shown.

Here we shall study a little of what is known about the class of knots
realized as periodic orbits of the Lorenz template’s semi-flow. An important
symbolic tool is the use of words to describe orbits. We label the right
band z and the left band y. Then given a staring point on the branch line,
we can write down a sequence of z’s and y’s to describe the path of the
forward orbit of our point. If the orbit is periodic we shall just record the
number of symbols needed to describe one circuit. Thus the orbit shown in
Figure 9 is zzyzy (and turns out to be a trefoil knot). Of course, any cyclic
permutation of xzyzy would give the same path.

The key fact is, there is a one-to-one correspondence between the equiva-
lence classes of finite words in two symbols under cyclic permutations and the
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set of periodic orbits of the Lorenz template. Similar correspondences can
be set up for any template and an appropriate symbol space. This follows
from the theory of subshifts of finite type and, in particular, Proposition 3.3.

Knots which occur as periodic orbits in the Lorenz template are called
Lorenz knots.

Proposition 6.1. (1) All Lorenz knots are positive braids with full twists,
(2) all torus knots (defined below) are Lorenz knots, (3) all Lorenz knots are
prime, and (4) the only split Lorenz links have either the x or y loops as a
component.

We shall only prove 1, 2, and 4. Although Williams proved 3 directly in
[29] it is now known that 1 implies 3; that is positive braids with a full twist
are prime knots, as Williams himself had conjectured [7, 26]. It is generally
believed that there are examples of positive braids with full twists that are
not Lorenz knots, but this has not to our knowledge been written up.

The proof of Proposition 6.1 (and several others) uses what is known as
the belt trick. Consider the strip with a “loop-de-loop” as show in Figure 10.
As we pull the ends apart the “loop-de-loop” turns into a full twist.

FI1GURE 10. The belt trick.

Proof of 1. The full twist is revealed by doing surgery on the template. We
delete the two segments of flow lines that meet at the center of the branch
line and start at the branch line. Then deform the resulting new template.
But this new template has just the same periodic orbits as does the Lorenz
template. The surgery and deformation are shown in Figure 11. The de-
formation uses the belt and in the last step a move we shall call the lamp
shade trick. It insures that df/dt > 0 for all orbits except the z and y orbits
(which are horizontal in Figure 11. But the result holds for these two orbits
trivially.

Positivity is clear as only positive crossings can be realized. O
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FIGURE 11. Surgery on a template

A torus knot is a knot that can be represented by a closed curve on a
standardly embedded torus. A torus is standardly embedded if it is the
boundary of an unknotted solid torus. All torus knots can be represented
by a pair of relatively prime integers (p,q). The number p gives the num-
ber of times the knot wraps around the long way (longitudinally), while ¢
gives the number of time the knot wraps around the torus the short way
(meridionally).

A torus knot can always be presented so as to have all positive or all
negative crossings. We are only interested in positive torus knots. It is not
hard to check that (p,q) = (¢,p), but otherwise the (p, q) representation is
one-to-one for positive torus knots and p, ¢ > 0. We shall assume p < g¢.

Proof of 2. In Figure 12 we show how to place a (p, ¢) torus knot on a torus.
We do not need the whole torus; the knot can be drawn in the split strip
that wraps about the torus in Figure 12. The main branch of the strip has
p strands of the (p,q) knot. This part of the strip makes n > 0 full twists
around the torus, though the figure shows only one full twist. Then the
strip splits in two with a strands staying of the side of the torus facing the
reader and b strands making an extra full twist around the torus. Then the
two strips come back together. One sees that ¢ = np + b, and that there is
a single knot as long as p and ¢ are relatively prime.

Figure 13 shows how to place the split strip onto the Lorenz template
so that any torus knot can be realized as a closed orbit of the template’s
semi-flow. Here we have used the belt trick n + 1 times. Note that in this
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figure too, only the n = 1 case is shown, but the reader should be able to see
how to add on extra loops of the strip about the z band of the template. [

n full twists

astrands

FI1GURE 12. Torus knots

loop around
ntimes

FIGURE 13. Torus knots are Lorenz

Proof of 4. Any two orbits whose words involve both z’s and y’s must cross,
and all the crossings are positive. Thus, the linking number is not zero. [J

We conclude this section by stating one of the first general results that
template theory has given to the study of flows and differential equations.

Theorem 6.2 (Franks & Williams). A smooth flow in R? or S® that has
a compact invariant set and positive topological entropy has infinitely many
distinct knot types among its closed orbits.
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The invariant set of a flow ¢; on a manifold M is (\_ ., oo ¢+(M). We
shall not define topological entropy, but only state that it a standard device
for measuring “mixing”. The gist of the proof is to show that any such flow
must have a part of its invariant set that can be modeled by an embedded
Lorenz template. Proposition 5.1 is used to show that there are closed orbits
of arbitrarily high genus and thus infinity many distinct knot types can be
realized as closed orbits.

7. LORENZ-LIKE TEMPLATES

By Lorenz-like templates we mean one of the templates depicted in Fig-
ure 14, where there are m half twists in the z branch and n half twists in
the y branch. We shall denote such a template by L(m,n). Thus L(0,0)
is the Lorenz template. Notice that L(m,n) = L(n,m) via a 180° rotation.
We shall at times abuse our own notation and use the symbol L(m,n) to
represent the set of knots and links realizable by the closed orbits in the
semi-flow on L(m,n).

X-branch Y -branch

FI1GURE 14. Lorenz-like Templates.

Proposition 7.1 (Williams). Knots in L(0,n) for n > 0 are positive braids
with a full twist and hence are prime.

Proof. For n = 0 we already have this result. For n > 2 Figure 15 shows
how to manipulate a template L(0,n) to see the full twist. This is actually
a simple application of the lamp shade trick used in the proof of Proposi-
tion 6.1 (1). Positivity is clear. In [17] it shown that knots on L(0,1) do
indeed have a full twist presentation, but there does not appear to be a
presentation of the template where all knots are simultaneously presented
as positive braids with full twists. Also, the result in [26] shows that having
a half twist in a positive braid is enough for primeness. O
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FIGURE 15. At least n half twists.

Proposition 7.2. There is a lower bound on the genus of nontrivial knots
in L(0,n) of g > (n—1)/2, for n > 0.

Proof. Referring again to Figure 15, suppose we have a knot with s strands.
Notice that s is also just the number of y strands. If there is only one y
strand, then we have an unknot. Each half twist forces s(s —1)/2 crossings.
Suppose s > 1. Thus, since all the crossings are positive, Proposition 5.1
gives g > (n—1)/2. O

This shows, for example, that there can be no trefoils on L(0,n) for n > 3,
since the trefoil is a genus one knot.

Proposition 7.3. As sets of knots, L(0,n) C L(0,n — 2), for all integers
n.

Proof. The proof is pictorial. Figure 16 shows how to place L(0,n) into
L(0,n —2). Again we make use of the belt trick, paying careful attention to
the sign of the new full twist. O

Proposition 7.4. For n <0, L(0,n) contains composite knots.

Proof. Figure 17 shows a composite knot in L(0,—1), found by Williams
[29]. Its word is zzyyyyzzy and, as the reader can check, it is a con-
nected sum of positive and negative trefoils. Figure 18 is of a composite
in L(0,—2) found in [22]. The knot type is the same as before. Its word
is xrxxyrxrryyryrryyry. These examples and Proposition 7.3 give the re-
sult. O

Proposition 7.5. As sets of knots L(0, £4) is a subset of L(0,+1) (respec-
tively).

Proof. Figure 19 gives the proof for the minus case. The surgery shown
starts by cutting along the y orbit. This changes the invariant part of the
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FIGURE 16. L(0,n) is in L(0,n — 2).

© — &6

FIGURE 17. A composite knot in L(0,—1).

semi-flow, but the knot type of the new y orbit is still that of the unknot.
The linking number of the new y orbit with another closed orbit will be
twice the linking number of the original y with the other orbit. So, the links
have changed, but only a little. Any link in L(0,—4) that does not use the
y orbit is isotopic to a link in L(0,—1). The plus case is similar.

The proof goes back to when one of us, as a seventh grader, was shown
that when you cut a Mébius band down the middle you get a strip with four
half twists in it. O

The following dichotomy has emerged. In the case n > 0 the templates
are positive, that is all closed orbits are positive braids, while if n < 0 the
templates are mized, that is they have knots which are not positive braids.
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FIGURE 18. A composite knot in L(—2,0).

) — V
Remove/ L
L(0,-1)

|

-

8

FIGURE 19. L(0,—4) as a subtemplate of L(0,—1)

In the former case all the knots are prime, while in the latter case there are
composite knots. In the next section we will see that this dichotomy is even
stronger.
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8. UNIVERSAL TEMPLATES

A universal template is one which contains all knots and links. It was
originally conjectured in [3] that such objects could not exist. However,
Ghrist has recently shown that they do [13]. Here we will only outline the
major steps needed to show this. More recently Ghrist has found a template
that contains all other templates as subtemplates.

Step 1. Call the template shown in Figure 20 U. Define U,, to be the
n fold cover of U shown in Figure 21. Ghrist shows that for all n > 0,
U, is a subtemplate of U. It is worth noting that his method does not
involve visually constructing the isotopy as above. Instead Ghrist developed
a symbolic formalism for orbit-to-orbit template embeddings to show that
each U, lives in U.

&

FIGURE 20. The template U

L— repeat ntimes

FIGURE 21. The templates U,
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Step 2. For every braid b there in an n such that b € U,. In Figure 22
we show how a negative crossing between the second and third strand can
be realized on U,. The positive crossing case is similar. By induction one
can show that any braid with a single crossing is realized by a closed orbit
on some U,. We can thus construct b on a U, by concatenation.

| J

FIGURE 22. Any crossing can be realized on U,

In [23] it is shown that U is a subtemplate of L(0, —2). This, together with
Propositions 7.3 and 7.5, shows that all the templates L(0,n) for n < 0 are
universal. While there are examples of positive templates with composite
knots, e.g. L(n,m) for n, m > 1, there always appears to be a limit on the
number of prime factors. It is conjectured to be two for the example just
cited. For examples (besides the Lorenz template) where such bounds have
been confirmed, see [24].

Conjecture 8.1. If T is a positive template, there is a number n such all
periodic orbits of T have n or fewer prime factors.

Holmes and Ghrist [14] have found differential equations and an open
set of parameter values in which U arises. There are even electrical circuits
governed by these equations. On the other hand, Holmes [16] has pointed out
that positive templates arise naturally in the dynamics of forced oscillators,
provided the hypothesis of hyperbolicity holds.

We remark that Ghrist’s isotopic embedding of U, in U is quite convo-
luted. For the figure-8 knot the number of strands in Ghrist’s presentation
runs into the millions. This is of some comfort to Sullivan and Williams,
who had looked high and low for the figure-8 knot in this template without
success. Still, it would be interesting to find minimum representations of a
given knot or link in U. Anyone care to try?

The study of knotted periodic orbits and related phenomena is a growing
and exciting field. The reader wanting to learn more may wish to consult
the recently published book, Knots and Links in Three-Dimensional Flows
[15].
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