ERRATA TO AN INVARIANT OF BASIC SETS OF SMALE
FLOWS

MICHAEL C. SULLIVAN

There is an error in [5], which is repeated in [6, 7] and [4, Definition 5.2.5].
The problem is with the definition of ribbon sets. With the new definition
given below all results are preserved.

Ribbons sets were defined as the local stable manifold of a basic set of
saddle type in a Smale flow. However, every local stable manifold has some
“thickness”, € > 0. But in the proof of Lemma 4.3, which is used to prove
Theorem 4.1, one must be able to make arbitrarily many refinements and
reorderings of the Markov partition. Hence a local stable manifold need not
be invariant. Intuitively, what is needed is an infinitesimal stable manifold.
Formally, we redefine a ribbon set to be the suspension of a disjoint union
of local stable manifolds of points in a cross section of the basic set.

I would like to thank Christian Bonatti, Francois Beguin and Gioia Vago
for calling this to my attention, and to call attention to recent work by a
group of French researchers on Smale diffeomorphisms on surfaces and flows
in 3-manifolds. See [1, 2, 3, 8].
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