
Chapter 1

Knots in Flows

A solution curve to a differential equation may form a loop. Such cyclic
or period behavior is of great interest. The classical Poincaré-Bendixson the-
orem establishes the existence of a periodic solution curve in vector fields in
the plane for suitable hypotheses. It is a mainstay of differential equations
courses to this day. If the phase space of interest is three dimensional periodic
solution curves may form knots and different periodic solution curves may be
linked. In 1950 Herbert Seifert proved the existence of closed integral curves
for certain flows in S3 and asked if this was always the case for nonsingular
continuous flows on S3 [40]. This became known as Seifert’s conjecture. This
question drove a great deal of research. It was answered in the negative by
Paul Schweitzer in 1974 [39]. His example was C1. It is now known that there
are C∞ and analytic examples [33].

In 1963 Edward Lorenz published his work examining a 3 × 3 ODE with
very odd behavior [35]. It had many periodic orbits that are knotted and
linked in complex ways. In 1983 Joan Birman and Robert Williams developed
a systemic framework to analyze this behavior [9]. This was one of the main
motivators for the serious study of knots in flows.

We give some technical definitions. Let M be a compact Riemannian 3-
manifold. For our purposes a flow on M is a smooth map f : M × R → M
such that f(p, 0) = p and f(p, s+ t) = f(f(p, s), t) for all p ∈ M and s, t ∈ R.
Often, M will be S3. For p ∈ M the orbit of p is O(p) = {f(p, t) | t ∈ R}.
If O(p) = {p}, then p is a fixed point of f . A flow without fixed points is a
nonsingular flow. If there exists a T > 0 such that f(p, T ) = p, then O(p) is
an embedded circle, that is, it is a knot. We say in this case that O(p) is a
periodic orbit or a closed orbit.

As noted above smooth nonsingular flows on S3 with no closed orbits
exist. As we will see there are flows on S3 in which every knot and link type is
realized by closed orbits [16, 19] and such flows can arise as solutions to 3× 3
ODEs in R

3 [17].
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1.1 Hyperbolic Flows and Basic Sets

The chain recurrent set of a flow f is

R ={p ∈ M : ∀ǫ > 0, ∃{p0 = p, p1, p2, . . . , pk} ⊂ M, ∃{t1, t2, . . . , tk} ⊂ R
+

such that d(f(pi, ti), pi+1) < ǫ, i = 1, . . . , k − 1, d(f(pk, tk), p0) < ǫ}.

The chain recurrent set of a flow includes fixed points and periodic orbits, but
also more complicated orbits that come back near themselves over and over.

The chain recurrent set of a flow is said to have a hyperbolic structure if
the tangent bundle of the manifold can be written as a Whitney sum TR =
Eu ⊕ Ec ⊕ Es of sub-bundles invariant under Df where Ec

p is the subspace
of TMp corresponding to the orbit of p and such that there are constants
C > 0 and λ > 0 for which ‖Dft(v)‖ ≤ Ce−λt‖v‖ for v ∈ Es, t ≥ 0 and
‖Dft(v)‖ ≥ 1/Ceλt‖v‖ for v ∈ Eu, t ≥ 0.

Steve Smale showed that when R is hyperbolic it is the closure of the
periodic orbits of the flow and that it has a finite decomposition into compact
invariant sets each containing a dense orbit; he called these the basic sets of
the flow [41, 15].

We define respectively the stable and unstable manifolds of an orbit O in
a flow f . See Figure 1.1

W s(O) = {y ∈ M : d(f(y, t), f(x, t)) → 0 as t → ∞ for some x ∈ O},

Wu(O) = {y ∈ M : d(f(y, t), f(x, t)) → 0 as t → −∞ for some x ∈ O}.

That these are manifolds is a classical result of Hirsch and Pugh [29] re-
ferred to as the Stable Manifold Theorem. A flow is structurally stable if it is
topologically equivalent, i.e., there is a homeomorphism taking orbits to orbits
preserving the flow direction, to flows obtained by small enough perturbations.

Orbits repelled

Orbits Attracted

FIGURE 1.1: Stable and Unstable Manifolds

A flow with hyperbolic chain recurrent set R satisfies the transversality
condition if the stable and unstable manifolds of R always meet transversally.
A flow that has a hyperbolic chain recurrent set and satisfies the transversality
condition is structurally stable; see [15, Theorem 1.10] for references. The
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converse — known as the C1 Stability Conjecture — was proposed by Palis
and Smale [37] and was proven by Hu [32] for dimension 3 and for arbitrary
dimension by Hayashi [28]; see also [48].

1.1.1 Morse-Smale Flows

If the chain recurrent set of a flow is hyperbolic, consists of a finite collec-
tion of periodic orbits and fixed points, and satisfies the transversality con-
dition, we have a Morse-Smale flow. Daniel Asimov showed that for n 6= 3
all n-manifolds (possibly with boundary), subject to certain obvious Euler
characteristic criteria, support nonsingular Morse-Smale flows [4]. John Mor-
gan has characterized which 3-manifolds (possibly with boundary) support
nonsingular Morse-Smale flows [36] and Masaaki Wada has determined which
labeled links can be realized as the invariant set of a nonsingular Morse-Smale
flow on S3. The components are labeled as attractors, repellers and saddles.
See [47]; see also [11]. The simplest nonsingular Morse-Smale flow on S3 is
the Hopf flow which has just two closed orbits, one an attractor, the other a
repeller, that form a Hopf link. The essence of Wada’s result is that given an
allowed labeled link one can apply certain allowed moves, involving cableings
and connected sums, and the resulting labeled link can be realized as the in-
variant set of a Morse-Smale flow. Then starting with the labeled link in the
Hopf flow, one can generate all other allowed labeled links.

As a possible area for future work, one would like to generalize Wada’s
theorem to other 3-manifolds, but Wada’s proof depends heavily on the triv-
iality of the fundamental group of S3. Little progress has been made, but see
[55].

Wada’s links come up in two other types of flows. A certain subset of these
links are realized as strands of fixed points for flows on S3 arising from Bott-
integrable Hamiltonian systems and in flows arising from contact structures
[18, 45].

1.1.2 Smale Flows

If the chain recurrent set of a flow is hyperbolic, at most one-dimensional
and satisfies the transversality condition the flow is known as a Smale flow.
These were introduced by John Franks who was a student of Smale [15]. Basic
sets which are not fixed points or isolated closed orbits are suspensions of
nontrivial irreducible shifts of finite type (SFTs). (See [34] for definitions of
terms for symbolic dynamics, SFTs have infinitely many periodic orbits but
rational zeta functions.) These must be saddle sets, referred to as the chaotic
saddle sets.

These chaotic saddle sets can be modeled by branched 2-manifolds with
semi-flows where there is a bijection between any link of closed orbits in the
basic set and a link of the same link-type in the semi-flow. These models
are referred to as templates. Figure 1.2 shows the Lorenz template, which is
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denoted by L(0, 0); its boundary is black, the branch line is blue and a the
red periodic orbit shown is a trefoil knot. Its periodic orbits were first studied
by Joan Birman and Robert (Bob) Williams. [9]. They showed it supports
infinitely many distinct knot types as closed orbits, that the set of links that
can be realized is a subset of the set of closed positive braids with a full twist.
It follows that these knots are fibered and prime. Lorenz knots, as they have
come to be called, have been studied extensively and we will have more to say
about them later.

FIGURE 1.2: Lorenz Template

Figure 1.3 depicts a Smale flow on S3 with three basic sets, an attracting
closed orbit that is a trefoil, a repelling closed orbit that is a meridian of the
attractor, and a chaotic saddle set modeled by a Lorenz template. In [44] all
possible ways that the Lorenz template can be realized in a nonsingular Smale
flow on S3 with three basic sets are given.

There are many other templates one can construct. In “template theory”
one generally asks how a given template can be realized in Smale flows, in-
cluding the knotting and linking of the isolated closed orbits, and what types
of knots and links are realized as closed orbits in an embedded template. A
Lorenz-like template L(m,n) is like the Lorenz template but there are m and
n half twists in the respective bands. The template L(0, 1) has been used to
model a suspension of Smale’s horseshoe map [10, 31, 30].

Up to homeomorphism there are three types of Lorenz-like templates:
L(0, 0), L(0, 1) and L(1, 1). Bin Yu studied how the latter two can be real-
ized as models for Smale flows on S3 and how each can be realized in Smale
flows on certain other 3-manifolds [53]. He later showed that every orientable
3-manifold without boundary supports a nonsingular Smale flow with three
basic sets, an attracting closed orbit, a repelling closed orbit and a chaotic
saddle set [54]. Elizabeth Haynes and Kamal Adhikari each studied the real-
ization in flows of more complex templates [27, 1].
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FIGURE 1.3: Smale flow with three basic sets

The templates L(0, n) for n ≥ 0 (n positive means the band has the same
crossing type as the crossing above the branch line) were shown by Robert
F. Williams to contain only prime knots [51]. He and Joan Birman in the afore-
mentioned foundational paper [9] conjectured that there would be a bound on
the number of prime factors on any template. This was shown to be false in
[42]. Robert Ghrist went further and showed that many templates, including
L(0,−1), contain all knot and link types [16, 52]. Templates with this property
are called universal templates.

Ghrist and Todd Young constructed a family of flows that have a bifurca-
tion from being Morse-Smale flows to Smale flows containing all links [20].

For flows where the hyperbolic chain recurrent set is of dimension two
or three, one can “split” along one or two, respectively, periodic orbits and
create a one dimensional basic set whose periodic orbits are the same as in the
original flow, with one or two exceptions [10, 19]. This provides a connection
between Smale flows and Anosov flows.

1.2 Lorenz Knots

The subject of Lorenz knots and links has sparked quite a bit of interest
[7, 22]. Birman and Ilya Kofman have characterized Lorenz links, actually a
sight generalization, as T-links. A T-link is the closure of a braid of the form

(σ1σ2 · · ·σr1)
s1(σ1σ2 · · ·σr2)

s2 · · · (σ1σ2 · · ·σrk)
sk

where 1 ≤ r1 ≤ r2 ≤ · · · ≤ rk, 1 ≤ si for i = 1, . . . , k and σj denotes a
positive crossing of the j and j+1 strands of the braid. They make two inter-
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esting observations. Following Étienne Ghys they note that of the 1,701,936
prime knots with sixteen or fewer crossings only twenty are Lorenz knots. Yet,
among the 201 simplest hyperbolic knots, at least 107 are Lorenz knots. They
then pose the question, “Why are so many geometrically simple knots Lorenz
knots?” [8]

Polynomial invariants are very important in knot theory and there are
interesting things to be said about polynomial invariants and Lorenz links. In
there work [8], Birman and Kofman noted: “The Jones polynomials of Lorenz
links are very atypical, sparse with small nonzero coefficients, compared with
other links of an equal crossing number.” Pierre Dehornoy has showed that
the zeroes of the Alexander polynomial of a Lorenz knot all lie in an annulus
whose width depends on the genus and the braid index of the knot [12]. This
is a deep area of on going work.

In one of the most surprising developments Ghys has discovered that
Lorenz knots arise in a seemingly unrelated problem. He studied the geodesic
flow on the unit tangent bundle of the quotient of the Poincare disk by
PSL(2,Z). The periodic orbits are exactly the Lorenz knots excluding the
two boundary unknots [21]. See [23] for a visually stunning exposition.

1.3 Partially Hyperbolic Flows and Strange Attractors

Historically, the study of Lorenz knots, and the reason they are called
Lorenz knots, started with attempts to understand the “strange attractor”
arising in the flow for a 3 × 3 nonlinear ODE introduced by Edward Lorenz
[35].

ẋ(t) = −10x+ 10y

ẏ(t) = 28x− y − xz

ż(t) = −8z/3 + xy

Figure 1.4 shows three orbits with different initial conditions converging to-
ward the attractor.

It was in this context that Williams introduced a geometric Lorenz attrac-
tor in the 1970’s to study the periodic solution curves for the Lorenz equations
[50]. See also [49, 26]; similar ideas were developed independently in the Soviet
Union [2]. The model differs from L(0, 0) in two important ways. First, it has
a saddle fixed point that cannot be isolated from all the periodic orbits which
implies that it is not hyperbolic. Thus, it was dubbed a strange attractor.
Second, the two unknotted periodic orbits in the boundary of L(0, 0) are not
realized. See Figure 1.5.

Proving that the Lorenz equations actually have a Lorenz attractor is very
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FIGURE 1.4: Lorenz Attractor

hard and took many years before this was established by Warwick Tucker in
1999 [46].

Notice the flow line coming from the left end point of the branch line
(blue) next meets the branch line at α a little to the right of the left end
point. Likewise the flow line coming from the right end point of the branch
line next meets the branch line at β a little to the left of the right end point.
It has been shown the small changes in the parameters of the Lorenz equa-
tions shift the location of α and β. Thus, many periodic orbits are created
or destroyed in such a perturbation. Hence, the geometric Lorenz attractor
is not structurally stable. Yet, the basic form of the attractor remains under
small enough perturbations. This phenomena is called robustness. The details
of this are beyond the scope of this article, but we refer the reader to the
books [5] and [56].

a b

FIGURE 1.5: Geometric Lorenz Attractor
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Clark Robinson constructed differential equations with an attractor mod-
eled by Lorenz-like templates contained in L(−1,−1) [38]. Here the knots are
positive but are not necessarily positive braids. They need not be prime but it
is conjectured that there is a bound of two prime factors [43]. Although pos-
itive knots need not be fibered, as is the case with positive braids, Ghazwan
Alhashimi has shown that the knots in L(−1,−1) are fibered [3].

Physicist Robert Gilmore has pioneered the empirical study of strange
attractors. He has studied how the existence of certain knotted periodic orbits
in flows force the existence of many others. Templates play a key role. With
Marc Lefranc he has written a book on this work, Topology in Chaos [24]. See
also the collection [25] in celebration of his 70th birthday.

1.4 Euler Flows

John Etnyre and Ghrist wrote a series of papers on flows arising in theo-
retical fluid dynamics. They prove that any steady solution to the Cω Euler
equations on a Riemannian S3 must possess an unknotted periodic orbit. They
employed the relationship between contact structures to show the existence
of solutions whose flow lines trace out closed curves of all possible knot and
link types by way of a universal template. [13, 14]

Michael C. Sullivan
Southern Illinois University
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différentielles, Acta Mathematica, 24(1):1–88, 1901.

[7] Joan S. Birman. The mathematics of Lorenz knots. Topology and dy-
namics of chaos: In celebration of Robert Gilmore’s 70th birthday ,
127–148, World Sci. Ser. Nonlinear Sci. Ser. A Monogr. Treatises, 84,
World Sci. Publ., Hackensack, NJ, 2013.

[8] Joan S. Birman and Ilyn Kofman. A new twist on Lorenz links. Jour-
nal of Topology, 2(2):227–248, 2009.

[9] Joan S. Birman and Robert F. Williams. Knotted Periodic Orbits in
Dynamical Systems I: Lorenz Knots. Topology 22 (1983), 47–82.

[10] Joan S. Birman and Robert F. Williams. Knotted periodic orbits in
dynamical system. II. Knot holders for fibered knots. Low-dimensional
topology, 1–60, Contemp. Math., 20, Amer. Math. Soc., Providence,
RI, 1983.

[11] J. Casasayas, J. Martinez Alfaro, and A. Nunes. Knots and links in
integrable Hamiltonian systems. Journal of Knot Theory and Its Ram-
ifications, 7(2):123–153, 1998.

9



10 Bibliography

[12] Pierre Dehornoy. On the zeroes of the Alexander polynomial of a
Lorenz knot. Ann. Inst. Fourier, Grenoble, 65(2):509–548, 2015.

[13] John Etnyre and Robert W. Ghrist. Contact topology and hydro-
dynamics I: Beltrami fields and the Seifert Conjecture, Nonlinearity,
13(2):441–458, 2000.

[14] John Etnyre and Robert W. Ghrist. Contact topology and hydrody-
namics III: knotted orbits, Trans. Amer. Math. Soc., 352(12):5781–
5794, 2000.

[15] John Franks. Homology and dynamical systems. CBMS Regional Con-
ference Series in Mathematics, 49. Published for the Conference Board
of the Mathematical Sciences, Washington, D.C.; by the American
Mathematical Society, Providence, R.I., 1982. viii+120 pp. Reprinted,
with corrections, 1989.

[16] Robert W. Ghrist. Branched two-manifolds supporting all links.
Topology, 36(2):423–448, 1997.

[17] Robert W. Ghrist, and Philip Holmes. An ODE whose solutions con-
tain all knots, Intl. J. Bifurcation and Chaos, 6(5):779–800, 1999.

[18] Robert W. Ghrist and R. Komendarczyk. Topological features of in-
viscid flows, in Introduction to the Geometry and Topology of Fluid
Flows, NATO-ASI Series II, vol. 47, Kluwer Press, 183–202, 2002.

[19] Robert W, Ghrist, Philip Holmes and Micheal C. Sullivan. Knots and
links in Three-Dimensional Flows, Lecture Notes in Mathematics, Vol.
1654, Springer-Verlag, Berlin, 1997.

[20] Robert W. Ghrist and Todd Young. From Morse-Smale to all links,
Nonlinearity, 11(4):1111–1125, 1998.

[21] Étienne Ghys. Knots and dynamics. International Congress of Math-
ematicians, vol. I, 247–277, Eur. Math. Soc., Zrich, 2007.

[22] Étienne Ghys. The Lorenz attractor, a paradigm for chaos. Chaos,
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