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Abstract

We introduce a way of characterizing the linking of one-dimensional minimal sets in t
dimensional flows and carry out the characterization for some minimal sets within flows mo
by templates, with an emphasis on the linking of Denjoy continua. We also show that any ap
minimal subshift of minimal block growth has a suspension which is homeomorphic to a D
continuum.
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1. Introduction

A flow is a continuous group actionφ of (R,+) on a spaceX. If f is a continuousZ
or R action onX, then a closed setM ⊂ X is a minimal set of f if M is invariant but
contains no proper, non-empty, closed set which is also invariant under the action.
equivalent to requiring that thef -orbit of each point ofM be dense inM. The simplest
one-dimensional minimal sets of flows are periodic orbits, and the linking of periodic o
in three-dimensional flows has been well-studied; see [4,5,14]. We broaden the perspec
and introduce a way of characterizing the linking of one-dimensional minimal sets in t
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dimensional flows. With an embedding of two minimal setsM andM ′ in three space we
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associate a homomorphism̌H1(M
′) → Ȟ 1(M) from Čech homology tǒCech cohomology

with integer coefficients, thelinking homomorphism. In the case of circular minimal set
the standard linking number of the embedding represents this homomorphism. In th
general case this linking homomorphism is not necessarily represented by an integ
depends on the structure of the groupsȞ1(M

′) andȞ 1(M).
We shall examine the linking homomorphism for minimal sets having min

block growth in the Lorenz template derived from the full shift on two symbols
Section 5), which includes the minimal sets derived from Sturmian sequences. The l
homomorphism in this case can be represented by a 2×2 integer matrix, the Smith norma
form of which is an invariant of the embedding. In the process we shall show that eac
minimal set is homeomorphic to a Denjoy minimal setDα . Moreover, we shall show tha
given anyDα from among the uncountably many topologically distinct Denjoy minim
sets (see [12,3]), the union of all homeomorphic copies ofDα in such a template is dense
the template, extending the results of [6]. Since these templates modelC∞ flows in three-
space, this is a significant extension of a result of Knill [19], which is of interest since
the structure of the Denjoy minimal set prevented Schweitzer’s counterexample [26]
Seifert conjecture from being smoother thanC1+δ. (Later Harrison was able to improv
this to C2+δ [18].) Similar observations apply to the general class of isolated and n
isolated examples examined in [17]. One seesthat the behavior of these minimal sets
significantly different when not isolated and that they can interact in complicated way
(TheCω example of [20] is two-dimensional.)

For a spaceX, a metric spaceM is said to beX-like if for every ε > 0 there is a map
fε :M → X satisfying

diam
(
f −1

ε (x)
)
< ε for all x ∈ X.

Solenoids and circles are examples of circle-like, one-dimensional minimal sets of
In flows in three space one can frequently enclose circle-like minimal sets in
homeomorphic to a solid torus. Gambaudo et al. [13] used tubes enclosing minim
to define a sort of ergodic linking number. However, such a tube, when retracted
essentially embedded central circle, provides a natural map to a circle that will beε-
map when the cross-sectional diameters of the tube do not exceedε. Hence, if a minimal
set is not circle-like, one cannot expect to model the minimal set arbitrarily well w
tube homeomorphic to a solid torus.

With S1 ∨ S1 denoting the wedge of two circles, Denjoy minimal sets are not cir
like, but instead are(S1 ∨ S1)-like, as shown in [3] where the Denjoy minimal setDα

corresponding to the irrational numberα is represented as the inverse limit of an inve
sequence of(S1 ∨S1)’s, the projections ofDα onto the factorS1 ∨S1 spaces providing th
ε-maps. AndDα is not circle-like; otherwise,Dα would be the inverse limit of circles [22
and (by the continuity of̌Cech cohomology)Ȟ 1(Dα) would then have torsion-free ran
one or less, but (as we shall see)Ȟ 1(Dα) is isomorphic toZ2 and so has torsion-free ran
two; see [12] for a discussion of torsion-free rank. Generally, the linking homomorp
is a more appropriate way of characterizing the linking of minimal sets which ar
circle-like.
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2. The linking homomorphism
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Many one-dimensional minimal sets have trivial singular (co)homology (denoteH1
andH 1) but tellingČech (co)homology. (We shall always use integer coefficients.) W
M is not a periodic orbit, any mapS1 → M must be inessential since the image mus
contained in a path component and so must be an arc or a point. Solenoids, for ex
have trivialH1 andH 1, but their one-dimensionaľCech cohomology is sufficient for
topological classification [23]. For a Denjoy minimal setDα there is an inverse limi
representation [3]

S1 ∨ S1 f1←− S1 ∨ S1 f2←− S1 ∨ S1 f3←− · · ·Dα

where the bonding mapsfi depend on the continued fraction expansion ofα, but where
eachfi (independent ofα andi) induces isomorphisms ofH1(S

1 ∨ S1) andH 1(S1 ∨ S1)

which can be represented by matrices inSL
(
2,Z

)
. Thus, by continuity,Ȟ1(Dα) and

Ȟ 1(Dα) are both isomorphic toZ2 while having trivialH1 andH 1. For this reason we
useČech (co)homology.

While we are primarily interested in the linking of minimal sets, we shall define
linking homomorphism for two disjoint, one-dimensional, compact subsetsM,M ′ ⊂ R3 ⊂
S3. Alexander duality provides an isomorphism

A: Ȟ 1(M) ≈ H1
(
R3 − M

)
where

Ȟ 1(M) = lim→
{
H 1(U) | U is a neighborhood ofM

}
and the system is directed by reverse inclusion and the associated homomorphis
induced by inclusion. To couch everything in terms ofČech (co)homology, we utilize th
isomorphism (see [8, VIII;13.17])

ι: H1
(
R3 − M

) ≈ Ȟ1
(
R3 − M

)
known to exist sinceR3 − M is a manifold. HereȞ1 is given by taking the inverse lim
of the dual to the direct sequence used to defineȞ 1. With j : M ′ ↪→ R3 − M denoting the
inclusion, thelinking homomorphism Λ : Ȟ1(M

′) → Ȟ 1(M) is given by

Λ : Ȟ1
(
M ′) j∗−→ Ȟ1

(
R3 − M

) (ι)−1

≈ H1
(
R3 − M

) A−1

≈ Ȟ 1(M).

3. The linking of Denjoy minimal sets

Denjoy continua form a natural class of minimal sets to which the linking homo
phism applies well. Given two minimal setsM and M ′ in R3 and homeomorphism
h :M → Dα and h′ :M ′ → Dα′ , we have the inverse limit representations as indica
above and corresponding projectionspi(p

′
i ) :Dα(Dα′) → S1 ∨ S1 onto the factor space

SinceS1 ∨ S1 is an ANR, each of the mapspi ◦ h andp′
i ◦ h′ extends to a neighborhoo

Ui or U ′
i , which (by using finitely many flowbox neighborhoods coveringM andM ′) may
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be chosen to homotopically retract to a copy ofS1 ∨ S1. Since the bonding maps induce
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isomorphisms on (co)homology, the homomorphism

H 1(Ui) → Ȟ 1(M) = lim→
{
H 1(U) | M ⊂ U

}
given by identifyingH 1(Ui) with its occurrence in the direct system definingȞ 1(M) is
thus in an isomorphism. Similar observations apply toȞ1(M) andM ′. Thus, choosing
such neighborhoodsUi andU ′

i disjoint, we have the following scenario:

Λ : Ȟ1(M
′) j∗−→ Ȟ1(R3 − M) (ι)−1

≈ H1(R3 − M)
A−1

≈ Ȟ 1(M)

λ :H1(U
′
i )

∼

H 1(Ui)

∼

In the cases we shall examine, there is a Mayer–Vietoris decompositionUi = A ∪ B and
U ′

i = A′ ∪ B ′ with each of the setsA,B,A′ andB ′ homotopically equivalent to a circle
Associated with each of these four sets (oriented to go with the flow) is a basis elem
(co)homology which admit isomorphisms

H1
(
U ′

i

) ≈ Z2 and H 1(Ui) ≈ Z2

associatingH1(A
′) ∼ (1,0) andH1(B

′) ∼ (0,1) and similarly forUi. Then the homomor
phismλ can be represented by a 2× 2 integer matrixλ(M,M ′) which then also represen
Λ. Of course,λ(M,M ′) depends on our choice of neighborhoods, amounting to a ch
of bases forȞ1(M

′) andȞ 1(M).
Recall that two integer matricesL and L′ are equivalent if there are matricesX

andY invertible overZ with L′ = XLY. By a theorem of Smith, any integer matrix
equivalent to exactly one matrix having entriesm1, . . . ,mk only along its leading diagona
and satisfying the condition thatmi divides mi+1 for i = 1, . . . , k − 1. This uniquely
determined diagonal matrix is known as theSmith normal form. Thus, the Smith norma
form and absolute value of the determinant ofλ(M,M ′) are invariants ofΛ.

To calculateλ(M,M ′), observe that the first entry ofλ(M,M ′) represents the standa
linking number of the circles to whichA andA′ homotopically deform since following th
diagram for this entry yields the standard linking homomorphism. Hence, all the sta
techniques to calculate this linking number apply; see [25] for a list of such technique
most practical of these techniques perhaps being the counting of under/over crossin
regular projection. Ordinarily the sign of the linking number is considered irrelevan
is regarded as positive in all events, which can always be achieved by changing the
of basis element in one of the groups. We must however choose consistent orienta
calculating the entries and so some of the entries may not be positive. All four entri
then obtained by calculating the appropriate linking numbers. Reversing the rolesM

andM ′ and using the same pair of neighborhoods to calculate the matrix representa
Λ then transposes the matrix since the linking number of circles is unchanged by rev
the roles of the circles.

In a similar way, one can compute the linking homomorphism between a periodic
and a Denjoy continuum. In this case the homomorphism will be represented by a× 2
matrix or its transpose. In Section 6 we shall investigate the linking of Denjoy minima
within the Lorenz template.
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4. Minimal sets having minimal block growth
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We now turn to the problem of identifying Denjoy continua as minimal sets of w
studied flows by determining which classes of minimal subshifts of the full shift on fin
many symbols are Denjoy continua in their suspended flows. This will allow us th
measure the linking of Denjoy minimal sets as they occur in some natural settings.

We follow the presentations in [16,24] to define the minimalSturmian subshift of the
full shift on two symbols(Ω,σ) corresponding toα ∈ [0,1]− Q. With π : R → R/Z = S1

denoting the quotient map, letρα :S1 → S1 be the rotation given byπ(t) 
→ π(t + α) and
let A− = π([0, α)) andA+ = π((0, α]). For t ∈ R, define the sequencest+ = 〈t+n 〉n∈Z and
t− = 〈t−n 〉n∈Z by

t+n =
{

0 if ρn
α

(
π(t)

)
/∈ A+,

1 if ρn
α

(
π(t)

) ∈ A+,

and

t−n =
{

0 if ρn
α

(
π(t)

)
/∈ A−,

1 if ρn
α

(
π(t)

) ∈ A−.

ThenΩα = {t+ | t ∈ R} ∪ {t− | t ∈ R} is a minimal set of(Ω,σ). We see thatt+ = t− for
t /∈ {nα | n ∈ Z} and that forn ∈ Z and t = nα, the shift orbitsσm(t+) andσm(t−) ap-
proach each other asymptotically asm → ±∞, meaning limm→±∞ d(σm(t+), σm(t−)) =
0. Moreover, these are the only such orbits. Now definef :Ωα → S1, by

f
(
t+

) = f
(
t−

) = π(t).

Thenf −1(f (x)) = x provided

x /∈ {
t+ | t = nα, n ∈ Z

} ∪ {
t− | t = nα, n ∈ Z

}
,

and for

x ∈ {
t+ | t = nα, n ∈ Z

} ∪ {
t− | t = nα, n ∈ Z

}
f −1(f (x)) is a two point set. What is more,f provides a semiconjugacy (homomorphism
ρα ◦ f = f ◦ σ |Ωα .

Let us recall the construction of the standardα-Denjoy homeomorphism ofS1. Starting
with a single point, sayπ(0) ∈ S1, one replaces the orbit{ρn

α(π(0))}n∈Z with a sequence
of intervalsρn

α(π(0)) � In with lengths going to 0 asn → ±∞ to obtain a homeomorp
of S1, sayS′; see, e.g., [26]. Then by mapping each intervalIn homeomorphically onto
In+1 in an orientation preserving way and by mapping all other points ofS′ to the point
determined byρα, we obtain a Denjoy homeomorphismδα :S′ → S′ which has a unique
minimal setDα , the Cantor set formed by taking the complement of the interior of
intervalsIn, n ∈ Z. We denote the points ofDα − ⋃

n∈Z In by the pointπ(t) of S1 from
which it was derived and we label the intervalIn so that it goes from the pointan to the
pointbn as we follow the orientation. We then have a natural homeomorphismh: Ωα ≈Dα

given by

h
(
t+

) = h
(
t−

) = π(t) for t �=nα



130 A. Clark, M.C. Sullivan / Topology and its Applications 141 (2004) 125–145

and fort = nα

m
w

ols.

s;
t
have
al

udes
t, the

ution.
two

ecall

ck

p

m is
s:

prime
e can
r

h
(
t−

) = an and h
(
t+

) = bn,

andh also provides a conjugacy ofσ |Ωα to the restriction of the Denjoy homeomorphis
to Dα. By taking the suspension ofσ |Ωα we then obtain a one-dimensional minimal flo
which is topologically conjugate to the standard Denjoy flow onDα.

In what follows,(Σ,σ) denotes the full shift on an alphabet of finitely many symb
With P(S,n) denoting the number of distinctn-blocks that occur inS ⊂ Σ, a minimal
subshift(S,σ |S) satisfiesP(S,n) = n + 1 for all n if and only if S = Ωα for someα by
the results of [7]. The propertyP(S,n) = n + 1 is not a conjugacy invariant of subshift
however, the propertyP(S,n) � n+K for some fixedK and alln is a conjugacy invarian
of minimal subshifts, and any minimal subshift satisfying this condition is said to
minimal block growth [24]. Clearly any periodic or Sturmian minimal set has minim
block growth, but the class of aperiodic minimal sets having minimal block growth incl
some minimal sets which are not conjugate to any Sturmian minimal set. And ye
following does hold.

Theorem 1. A one-dimensional minimal set obtained from the suspension of an aperiodic
minimal subshift (S,σ |S) is homeomorphic to a Denjoy continuum if (S,σ |S) is of minimal
block growth.

Proof. As shown in [24, 4.2], any minimal set(S,σ |S) of minimal block growth is
obtained from a Sturmian by the composition of a sliding block code and a substit
A sliding block code yields a conjugacy of symbolic systems, so it is clear that
symbolic systems related bya sliding block code have homeomorphic suspensions. R
that a homeomorphismh :X → X is totally minimal provided thathn is minimal for each
positive integern. In [24, 4.1] it is shown that a totally minimal subshift of minimal blo
growth is conjugate to a Sturmian subshift via a sliding block code.

A substitution of lengthN associates to each symbola in the alphabetA of the
original symbolic system anN -block θ(a) from an alphabetB. This then induces a ma
of bisequences ofA to those ofB:

. . . x−2x−1 . x0x1 . . .
θ
−→ . . . θ(x−2)θ(x−1) . θ(x0)θ(x1) . . . .

If a substitution of lengthN is applied to a symbolic system, then the substituted syste
generally not conjugate to the original system. The argument of [24, 4.2] goes as follow
given (S,σ |S) of minimal block growth either(S,σ |S) is totally minimal (in which case
we have a subshift conjugate to a Sturmian via a sliding block code), or there is a
p0 such that(S, (σ |S)p0) is not minimal. We then need only treat the second case. On
then show thatS breaks intop0 clopen subsets{S0, . . . , Sp0−1} which are invariant unde
(σ |S)p0, and in this case(S,σ |S) is conjugate to

A :S0 × {0, . . . , p0 − 1} → S0 × {0, . . . , p0 − 1}

(s, i) 
→
{

(s, i + 1), if i < p0 − 1,(
(σ |S)p0(s),0

)
if i = p0 − 1.
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important to the proof of [24, 4.2] is that one can realize the first return map to one of
p0 clopen setsSi (which is conjugate to(σ |S)p0) by applying a simple substitution to th
original (S,σ |S), which at the same time reduces theK as in the definition of minima
block growth, i.e., the block growth decreases in complexity after this substitution
then repeats the argument for(Si , (σ |S)p0) until finally one must reach a totally minima
system, possibly a Sturmian (which are unique among all aperiodic minimal subsh
havingK = 1). That is to say that after a finite number of stages and corresponding p
p0, . . . , pk one obtains that the original system(S,σ |S) decomposes intop0 · · ·pk = N

clopen subsetsC0, . . . ,CN−1, each of which is invariant under(σ |S)N, which is also the
first return map to eachCi. This first return map(σ |S)N is then conjugate to a Sturmia
subshift and hence is conjugate to the return map to a clopen subset of the minim
of a Denjoy homeomorphism. The suspended flows are therefore topologically equ
by theorems of Aarts and Martens [1,2], meaning that there is a homeomorphism
two sets which preserves the orientation of orbits. Hence, the suspension of any ap
subshift of minimal block growth is topologically equivalent to a flow on a Den
continuum. �

It is well known that the collection of periodic orbits of(Ω,σ) is dense inΩ. Since
the orbits of the suspension ofΩα are not Lyapunov stable (or equicontinuous), it is
possible for periodic orbits to follow these orbits arbitrarily closely. Hence, we shoul
really think of the periodic orbits as modeling all the orbits of the flow. The follow
extends some results in [6], where it is shown that the union of all Denjoy minima
in the full shift is dense in the full shift on two symbols. (In [6] a Denjoy minimal se
allowed to have more than one pair of asymptotic orbits, but here we have just on
pair.)

Theorem 2. For any given α ∈ [0,1] − Q, the collection of points of Σ belonging to a
minimal set which in the suspension flow is homeomorphic to the Denjoy set Dα is a dense
subset of Σ.

Proof. Let x = 〈xn〉n∈Z ∈ Σ and letw = [x−N, . . . , xN ] be a central word ofx. Let A be
the alphabet of words of length 2N + 1 from Σ and let(ΩA, σA) be the full shift on the
bisequences ofA. Consider then the(2N + 1) higher power codeγ :Σ → ΩA given by

〈zn〉n∈Z

γ

. . .


 z−(N+1)

...

z−(3N+1)


 ·


 z−N

...

zN





 zN+1

...

z3N+1


 . . . .

It then follows thatγ ◦ σ (2N+1) = σA ◦ γ (see, e.g., [21, Section 1.4]). Then form
Sturmian sequencey from Ωα on the symbol corresponding tow and some other symbo
in A. Then the closure ofy in ΩA will be a σA minimal setM conjugate to the shift on
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Ωα. ThenM ′ = γ −1(M) will have a point (bisequence) agreeing withx on the central

s a

d

ooth

ps
iddle

erval
to the
d the

ight)

dy
s in

thers

ifolds
rbits.
block corresponding tow. In the suspension flow, this set will have a time 2N + 1 map on
a Cantor set cross-section that is conjugate to the shift onΩα as follows from the relation
γ ◦ σ (2N+1) = σA ◦ γ. And so rescaling time by this factor in the suspension yield
homeomorphism between the suspended minimal set and the suspension ofΩα , namely
Dα . We have essentially realized a sequence from a substituted image ofΩα agreeing with
the original sequence on a centralN block. By choosingN large enough we may thus fin
points from a minimal set homeomorphic toDα arbitrarily close tox. �

5. Templates

A template is a compact branched 2-manifold with boundary together with a sm
expansive semi-flow. The example we study here is called theLorenz template and is shown
in Fig. 1. The semi-flow proceeds downward from the branch line the splits and loo
around. The orbits merge at the branch line and many orbits exit just below the m
portion of the branch line. The non-wandering set of the semi-flow is locally an int
cross a Cantor set, except for points in the branch line where it is homeomorphic
product of a “Y ” and a Cantor set. We shall take the intersection of the branch line an
non-wandering set to be the middle thirds Cantor set, associating the sequence〈x0, x1, . . .〉
with

∑∞
i=0

2xi

3i+1 . The first return map for this invariant Cantor set is the one-sided (r
shift on 2 symbols:

〈x0, x1, . . .〉 
→ 〈x1, x2, . . .〉.
There is an extensive literature ontemplate theory. Templates where introduced to stu

strange attractors by Williams [28] but are used to model other types of invariant set
flows. The template form used here is a model for a chaotic saddle set in aSmale flow; see,
e.g., [27]. Etnyre and Ghrist [9] have used templates to model flows induced bycontact
structures with an eye towards applications in hydrodynamics, while Gilmore and o
have used templates to study attractors in various time series data; see [15].

Templates are constructed from invariant sets of hyperbolic flows on 3-man
as follows. An isolating neighborhood is foliated by strong stable manifolds of o

Fig. 1. Lorenz template.
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Collapsing along the stable direction results in a branched 2-manifold with an induced
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semi-flow. The original invariant set can be recovered by an inverse limit. In the colla
many orbits are identified. But periodic orbits, and the manner in which they are kn
and linked, are preserved in the template model. This was proven in [5], and a
can also be found in the book [14, p. 38]. In the latter reference it is noted that o
level of the symbolic dynamics the collapsing identifies those orbits approach each ot
asymptotically in forward time [14, p. 42]: two orbits〈xi〉i∈Z and〈yi〉i∈Z of the invariant
set collapsed onto the branch line are identified on the branch line if and only ifxi = yi for
i � 0. It is important to note that the collapsing takes place along the stable manifold
thus the collapsed template can be obtained by homotoping the original invariant s
its collapsed form. Also, since any two distinct minimal sets do not have asymptotic
in common, the collapsing only identifies orbits within individual minimal sets. Thus
“Fundamental Theorem of Templates” extends to other, aperiodic, minimal sets.

Theorem 3. Given a flow φ on a 3-manifold M with a hyperbolic chain-recurrent set, the
collection of minimal sets is in bijective correspondence with the collection of minimal
sets of the corresponding template(s). And, for any pair of minimal sets of minimal block
growth in the same component of the chain recurrent set of φ, the Smith normal form of the
linking homomorphism is the same as the Smith normal form of the linking homomorphism
of the corresponding minimal sets in the template model.

All previous work on template theory has focused on the study of the periodic o
This is the first paper to examine aperiodic minimal sets.

6. Sturmian links in the Lorenz template

Now we apply the theory to calculate linking matrices for minimal sets of min
block growth in the Lorenz template, focusing on Sturmian minimal sets. First we dev
convenient way of describing tubular neighborhoods in the template. It is to be recalled th
eachΩα has two asymptotic orbits corresponding to0+ and0− whose forward orbits ar
eventually identified in the template. However, by Theorem 3, the linking for the colla
minimal sets in the templateSα and the original are the same. Hereafter, we shall o
consider the collapsed minimal sets as they occur within the template.

Definition 1. For a given wordw = w0 . . .wn−1, let [w] be the cylindricalw-neighborhood
given by the smallest closed segment of the branch line containing all words startin
w together with the forward orbit of all such points up to and including the first retu
the branch line.

Definition 2. Given a minimal set or wordX in a shift,Ln(X) denotes the collection o
words of lengthn occurring inX.

This allows us to define the following sequence of neighborhoods of the susp
Sturmian minimal setSα in the template.
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Fig. 2. Two Sturmian minimal sets.

Fig. 3. Trefoil orbit andS3−2/3.

Definition 3. Given ann ∈ {1,2, . . .}, let

Uα
n

def=
⋃{[w] | w ∈ Ln(Ωα)

}
.

Then
⋂

n Uα
n = Sα . The linking of Sα andSβ can then be measured by finding ann

for whichUα
n andU

β
n are disjoint and then measuring the linking of these neighborho

which is possible sinceSα andSβ are compact and disjoint. The computer plots that fol
illustrate the neighborhoodsUα

5 for variousSα , which then allows a calculation of th
linking.

Example 1. Fig. 2 is an overlay ofS12−1/3 (black) andS6−1/3 (gray). The Smith norma
form of the linking of these two minimal sets is

[
1 0
0 0

]
.

Example 2. The orbit00101 is a trefoil knot. Letα1 = 3−2/3. Then from Fig. 3 we obtain
linking matrixλ(00101, Sα1) with Smith normal form[1,0]. In general the linking betwee
a closed orbit and a Sturmian minimal set can becharacterized by a single number, the le
common divisor of the entries in any linking matrix (vector).

However, a complete justification of this procedure would involve showing tha
(co)homology of these cylinder neighborhoods are isomorphic to the (direct) inverse
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of the systems as described in Section 3. In order to develop an inverse limit representation
ibe
mian
nce.

ht

two

ence

ial part
of Sα naturally related to theα and to justify the linking calculations and to descr
limitations of the linking of Sturmians, we now we bring to bear facts particular to Stur
minimal sets. These properties may be found in [10] and are listed here for convenie

In general,Ln(Ωα) has n + 1 elements. Thus, exactly one of then elements of
Ln−1(Ωα) can be extended with either a 0 or 1 to form words inLn(Ωα), while all other
words are uniquely extended. It is also known (see, e.g., [10, 6.6.19]) thatLn(Ωα) is closed
under palindromes, meaning thatw1 . . .wn ∈Ln(Ωα) if and only if wn . . .w1 ∈Ln(Ωα).

Definition 4. The unique word inLn(Ωα) that can be extended in two ways on the rig
to form a word inLn+1(Ωα) is denotedrα

n , while �α
n denotes the unique word inLn(Ωα)

that can be extended in two ways on the left.

These ambiguously extended words can be identified with the help of the
asymptotic sequences:

0+
n�0 = 0+

0 0+
1 0+

2 0+
3 . . . = 01u2u3 . . . and

0−
n�0 = 0−

0 0−
1 0−

2 0−
3 . . . = 10u2u3 . . . .

Theniu2u3 . . .un for i ∈ {0,1} are both inLn(Ωα), implying thatu2u3 . . .un = �α
n−1 and

thatrα
n−1 is the palindrome of�α

n−1. In the computer plots, one can detect thewedge point∑∞
i=1

2ui+1
3i , where the two asymptotic orbits merge on the branch line, by the coincid

of the terminus of the two cylinders[i�α
4], i = 1,2 at the initial part of the cylinder[�α

5].
One can also see that exactly one cylinder set has a terminus coinciding with the init
of two cylinders, seen as a splitting:[rα

5 ] feeds into[rα
4 i], for i = 1,2.

For any givenα, L2(Ωα) = 3, and an examination of the sequences0+ and0− reveals
that{01,10} ⊂ L2(Ωα). Thus, the following notion is well-defined.

Definition 5. A Sturmian minimal setΩα or one of its elements is oftype 0 or of type 1
according as 00∈ L2(Ωα) or 11∈L2(Ωα), denotedτ (Ωα) = 0 or 1 accordingly.

Definition 6. For i = 0,1 letσi be the substitution onΩ induced by the function of{0,1}
σi(i) = i; σi(i

′) = i ′i

wherei ′ = 1− i mod 2. That is,

σi

(〈. . . x−2x−1 . x0x1 . . .〉) = 〈
. . . σi(x−2)σi(x−1) . σi(x0)σi(x1) . . .

〉
.

Definition 7. For u ∈ Ωα of type i ∈ {0,1} , let φ(u) be the uniquev ∈ Ω with either
σi(v) = u or σ(σi(v)) = u.

Definition 8. Theadditive coding sequence of Ωα is the sequence〈
τ
(
φn(u)

)〉∞
n=0

for anyu ∈ Ωα.
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Definition 9. If the additive coding sequence ofΩα is written

n the

ay as
a
f the

on

e
a

n
tra full

int
the
es: (a)
the

ders
ir
her

to
n this
d

ogy

riginal

of the
0a01a10a2 . . . ,

wherea0 � 0 andai � 1 for i > 0 denote the number of consecutive 0’s (i even) or 1’s
(i odd) occurring in the corresponding portion of the additive coding sequence, the
sequence

〈ai〉∞i=0

is themultiplicative coding sequence.

Theorem 4. The multiplicative coding sequence 〈ai〉∞i=0 of Ωα is equivalent to the
continued fraction expansion of α; i.e., the continued fraction expansion of α and 〈ai〉∞i=0
have a common tail [10, 6.4.23].

We now describe a way of collapsing the cylindrical neighborhoods in such a w
to obtain a natural inverse limit representation of theSα. Similar constructions provide
systematic way of calculating the linking matrix, yielding very general descriptions o
linking of different types of Sturmians.

By identifying to a point all points within the cylinder[0] that are in the same suspensi
flow time from the branch line and similarly for[1], we obtainS1 ∨ S1 = X1 with the
branch line (which corresponds to the terminus of both[0] and[1]) mapping to the wedg
point and each of the cylindersyielding one of the circles. At the same time this provides
projection ofSα to X0. We assume now without loss of generality thatSα is of type 0. The
neighborhoodUα

2 has three cylinders:[00], [10] and[01]. As indicated in Fig. 6, we ca
find a subtemplate of the original Lorenz template, where this subtemplate has an ex
twist on the right, 1 side. In the terminology of [14], the subtemplate is of typeL(0,2),

just as the subtemplate in [14, 2.4.7].
We now form a wedge of two circlesX1 in much the same way. We identify to a po

all points within the cylinder[00] that are in the same suspension flow time from
branch line. Since 11 is not an allowed word for a type 0 Sturmian, there are two cas
[rα

2 ] = [00] or (b) [rα
2 ] = [10]. In case (a), this process identifies the initial segment of

cylinders[00] and[01] to a single point. Then we apply a similar process to the cylin
[01] and[10]. In case (b) we see that the cylinder leading from[10] feeds into the same pa
of cylinders[00] and[01]. This identification then leads to a wedge of two circles in eit
case: one circle corresponding to the cylinder[00] and the other corresponding to[01] and
[10]. In either case, the initial segment[0, 1

3] along the original branch line corresponds
the wedge point. Also, we can see that the inclusion of the uncollapsed cylinders o
level into the preceding level naturally induces a mapf1 :X1 → X0 that can be represente

by the matrixJ
def= (

1 1
0 1

)
. Notice that this map induces an isomorphism of (co)homol

and an isomorphism of fundamental groups.
This subtemplate, has a natural symbolic representation where the portion of the o

branch line corresponding to[0, 1
9] is recoded as 0 and the portion corresponding to[2

9, 1
3]

is recoded as 1, as indicated in Fig. 6. The symbolic representation of the points
original Sturmian with respect to this new coding corresponds to the sequences inφ(Ωα)
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as described in Definition 8. It is importantto note that the subshift corresponding to the
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e

recoding of the original Sturmian is again Sturmian.
Now we treat this subtemplate and the original minimal set within this subtemplat

as we did the original template. The recoded Sturmian is of type 0 or 1 according as
original Sturmian has additive coding sequence beginning with 00 or 01. See Fig. 7 for a
picture of the subsubtemplate corresponding to the 01 case. In either case, after ide
points in the same way as before, we are led to a wedge of two circlesX2 and a map
f2 :X2 → X1 represented by the matrixJ or its transposeJ T, according as we are in th
00 or 01 case.

Repeating this process iteratively, we obtain an inverse sequence(Xi, fi) with inverse
limit lim

↽
(Xi,fi) homeomorphic toSα since the cross-sectional diameter of the cylind

goes to 0 asi → ∞, as can be seen by recalling that any cylinder feeds into at mos
cylinders. Thus, for any givenε > 0, for sufficiently largei the projectionSα → Xi is an
ε-map. Notice that the bonding maps of both types induce isomorphisms of fundamen
groups and (co)homology.

Notice the similarity of this inverse limit representation with that found in [3]. T
number of bonding maps in a row of the formJ or J T is determined by the multiplicativ
coding sequence forα and thus is determined by the continued fraction expansio
α by Theorem 4. It follows that ifα and β have continued fraction expansions with
common tail, then the correspondingSα andSβ are homeomorphic. This and its converse
are shown in [3,11] for the uncollapsed Denjoy minimal setsDα andDβ. For the purpose
of topologically classifying the suspension of Sturmian minimal sets, only the tail en
the continued fraction expansion are relevant. However, we shall soon see that o
beginnings of the inverse limit expansions are relevant for the linking. To determine
linking of two SturmiansS0 andS1 with additive coding sequences〈αi〉∞i=0 and〈βi〉∞i=0,

with αi = βi, i � k, andαk+1 �= βk+1, we take subtemplates of typeα1, then of type
α2, . . . , αk . Then the recoded Sturmians will be of different types. In principle, as
become evident below, this then allows us to calculate the linking matrix.

The first proposition foreshadows the style of the arguments to follow and is o
independent interest.

Proposition 1. Let γ be the periodic orbit for (01)∞. Let Sα be any Sturmian minimal set.
Then

λ(Sα, γ ) ≈ [1 0].

Proof. Without loss of generality supposeSα is of type 0. Recall that we parameteri
the branch line of the Lorenz template from left to right as the closed unit interval[0,1].
Let p

def= γ ∩ [0, 1
3], with associated sequence 010101. . . and letq

def= γ ∩ [2
3,1], with

associated sequence 101010. . . . Since any 1 in the sequence for a point ofSα along the
branch line is followed by a 0, any point ofSα ∩ [0, 1

3] is to the left ofp and any point
of Sα ∩ [2

3,1] is to the left ofq . Consider the first subtemplate neighborhood forSα as
described above, with one “tube” corresponding to the cylinder[00] and the other to[01]
together with[10]. The portion ofSα in the[00] tube and its first return to the branch lin
is entirely to the left ofγ. Thus, it does not link at all withγ, and soλ(γ,S) ≈ [n,0], with
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Fig. 4. A Sturmian and the(01)∞ orbit.

then corresponding to the linking of the portion ofSα in [01], [10] tube. Sinceγ andSα

satisfy the branch line ordering described above, we can choose the tubular neighb
corresponding to[01], [10] to be entirely to the left (at the branch line) ofγ. This tube
then has only one over-crossing withγ . Thus,λ(γ,S) ≈ [1,0]. See Fig. 4 for a typica
example. �

There seems to be no such rigidity in the linking of other minimal sets andγ or between
Sturmian minimal sets and other periodic orbits. The periodic orbit of(001)∞ andS1/

√
3

have linking matrix with normal form[1 0], while the same periodic orbit andS√
2/3

have linking matrix with normal form[2 0].
The next few propositions and examples explore the 2× 2 linking matrix of pairs

of Sturmian minimal sets. Computer plots are helpful, but the images quickly be
impossible to resolve visually when two Sturmians share the first few terms in their ad
sequence. (An illustration of why we shouldnot let our students become too dependen
graphing calculators.)

Proposition 2. Let S0 and S1 be Sturmian minimal sets of type 0 and 1, respectively. Then

λ(S0, S1) ≈
[

1 0
0 0

]
.

Proof. Since points ofS1 ∩[0,1] have no consecutive 0’s, as in Proposition 1 the left m
point of S1 ∩ [0, 1

3] is to the right of the right most point ofS0 ∩ [0, 1
3] and the left mos

point ofS1 ∩ [2
3,1] is to the right of the right most point ofS0 ∩ [2

3,1]. A typical example
is illustrated in Fig. 5. Then we can measure the linking ofS0 andS1 by examining the
neighborhood corresponding to the[00] tube and[01], [10] tube ofS0 and the[11] tube
and[10], [01] tube ofS1 since all portions of the minimal sets within the[01], [10] tubes
are on opposite cross-sectional ends. Then the[00] tube ofS0 does not link at all withS1.
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Fig. 5. Sturmians of type 0 and 1.

Similarly, the[11] tube ofS1 does not link withS0. The[01], [10] tube ofS0 crosses ove
the[10], [01] tube ofS1 once, and so

λ(S1, S2) ≈
[

1 0
0 0

]
. �

Each of the following propositions naturallyyields another proposition obtained by
reversing the roles of 0 and 1.

Corollary 1. If we replace the Lorenz template L(0,0) in Proposition 2 with L(0,2n),
n > 0, then the same conclusion holds.

Proof. With an even number of twists the lexicographical ordering of the branch line
returns to it works as before. Now the long tube ofS0 crosses over the[11] tube ofS1 n

times, and it crosses over the long tube ofS1 n + 1 times. The[00] tube ofS0 still misses
S1. Thus,

λ(S0, S1) ≈
[

n 0
n + 1 0

]
≈

[
1 0
0 0

]
. �

Proposition 3. For i = 0,1 let Si be Sturmian minimal sets with additive coding sequences
beginning with mi consecutive 0’s satisfying m0 > m1 � 0. That is, the additive coding
sequences are of the form 0mi 1 . . . . Then

λ(S0, S1) ≈
[

1 0
0 0

]
.

Proof. As in the formation of the inverse sequence, we iteratively formm1 type 0
subtemplates of the original template. This is then a template of typeL(0,2m1). On
this subtemplate, the recoded Sturmian systems forS0 andS1 are of type 0 and type 1
respectively. Thus, by Corollary 1 we obtain the desired result.�
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Proposition 4. Let S0 and S1 be Sturmian minimal sets whose additive recoding sequences
start with 010and 011, respectively. Then

λ(S0, S1) ≈
[

1 0
0 0

]
.

Proof. It is now difficult to visualizeS0 and S1 distinctly on the Lorenz template. A
indicated in Figs. 6 and 7, we first take a type 0 and then a type 1 subtemplate. O
subsubtemplate,S0 is of type 0 andS1 is of type 1. Then Fig. 8 shows a choice of tub
systems, where the[00] and [01] cylinders are conflated below the branch line for
ease of computer drawing. (This has no effect on the linking calculation.) In this an
following figure, a small box with the numberN in it representsN half-twists of the band
inside the box. This yields:

λ(S0, S1) ≈
[

1 3
2 6

]
≈

[
1 0
0 0

]
. �



A. Clark, M.C. Sullivan / Topology and its Applications 141 (2004) 125–145 141
Fig. 7.

Fig. 8. Tubular neighborhoods.
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Fig. 9. Template for Proposition 5.

Proposition 5. Let S1 and S2 be Sturmian minimal sets whose additive recoding sequences
start with 0100and 0101, respectively. Then

λ(S1, S2) ≈
[

1 0
0 0

]
.

Proof. A further iteration of the procedure used in Proposition 4 yields the subsubsu
plate and tube systems shown in Fig. 9. (In this figure and the next, a box coverin
bands with a numberM representsM band crossings, left over right, with no twisting
Thus,

λ(S1, S2) ≈
[

3 5
9 15

]
=

[
1 0
0 0

]
. �
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The reader may be wondering if the linking matrix for any pair of Sturmian min
sets is

[
1 0
0 0

]
. Indeed, for a time we had hoped to prove that this was the case. Howev

following shows this is not so.

Proposition 6. Let S0 and S1 be Sturmian minimal sets whose additive recoding sequences
start with 0110and 0111, respectively. Then

λ(S1, S2) ≈
[

1 0
0 1

]
.

Proof. A further iteration of the procedure used in Proposition 4 yields the template a
tube systems shown in Fig. 10. Thus,

λ(S1, S2) ≈
[

2 7
3 11

]
=

[
1 0
0 1

]
. �
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Non-Sturmian minimal sets of minimal block growth are much more flexible in their
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linking behavior. For example, if one applies the substitutionθ : 0
θ
→ 0100; 1

θ
→ 0011 to
the Fibonacci substitution minimal set, one obtains a minimal setM of minimal block
growth. The linking matrix of the suspension ofM andS1/

√
2 has Smith normal form[

1 0
0 2

]
.

The apparent simplicity of the Smith normal forms for linking matrices of pair
Sturmian minimal sets in the Lorenz template is surprising and intriguing.

Question. Given the additive coding sequence of two Sturmian minimal sets, what
Smith normal form of the matrix representing their linking?

While we do not currently have an answer to this question, our procedure for t
subtemplates of the appropriate type untilone reaches a subtemplate for which the t
minimal sets are of different types does lead to the following general observation.

Theorem 5. Any two Sturmian minimal sets in the Lorenz template have a linking matrix
with non-zero Smith normal form and so are essentially linked.
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