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Abstract

We introduce a way of characterizing the linking of one-dimensional minimal sets in three-
dimensional flows and carry out the characterization for some minimal sets within flows modelled
by templates, with an emphasis on the linking of Denjoy continua. We also show that any aperiodic
minimal subshift of minimal block growth has a suspension which is homeomorphic to a Denjoy
continuum.
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1. Introduction

A flow is a continuous group actiah of (R, +) on a spaceX. If f is a continuou¥
or R action onX, then a closed se/ C X is aminimal set of f if M is invariant but
contains no proper, non-empty, closed set which is also invariant under the action. This is
equivalent to requiring that thg-orbit of each point off be dense inv. The simplest
one-dimensional minimal sets of flows are periodic orbits, and the linking of periodic orbits
in three-dimensional flows has been well-sadjisee [4,5,14]. We broaden the perspective
and introduce a way of characterizing the linking of one-dimensional minimal sets in three-
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dimensional flows. With an embedding of two minimal skfsand M’ in three space we
associate a homomorphisth (M') — H(M) from Cech homology t€ech cohomology

with integer coefficients, thienking homomorphism. In the case of circular minimal sets,

the standard linking number of the embedding represents this homomorphism. In the more
general case this linking homomorphism is not necessarily represented by an integer and
depends on the structure of the groupsM’) and H(M).

We shall examine the linking homomorphism for minimal sets having minimal
block growth in the Lorenz template derived from the full shift on two symbols (see
Section 5), which includes the minimal sets derived from Sturmian sequences. The linking
homomorphism in this case can be represented by 8 thteger matrix, the Smith normal
form of which is an invariant of the embedding. In the process we shall show that each such
minimal set is homeomorphic to a Denjoy minimal g&t. Moreover, we shall show that
given anyD, from among the uncountably many topologically distinct Denjoy minimal
sets (see [12,3]), the union of all homeomorphic copieBpfn such a template is dense in
the template, extending the results of [6]. Since these templates @&d#bws in three-
space, this is a significant extension of a residilKnill [19], which is of interest since
the structure of the Denjoy minimal set prevented Schweitzer’s counterexample [26] to the
Seifert conjecture from being smoother th@t?. (Later Harrison was able to improve
this to €219 [18].) Similar observations apply to the general class of isolated and nearly
isolated examples examined in [17]. One sted the behavior of these minimal sets is
significantly different when not isolated anidiat they can interact in complicated ways.
(TheC® example of [20] is two-dimensional.)

For a spaceX, a metric spacé/ is said to beX-like if for every ¢ > 0 there is a map
fe 1M — X satisfying

diam( £, *(x)) <e forallx € X.

Solenoids and circles are examples of circle-like, one-dimensional minimal sets of flows.
In flows in three space one can frequently enclose circle-like minimal sets in tubes
homeomorphic to a solid torus. Gambaudo et al. [13] used tubes enclosing minimal sets
to define a sort of ergodic linking number. However, such a tube, when retracted to an
essentially embedded central circle, provides a natural map to a circle that will &e an
map when the cross-sectional diameters of the tube do not excészhce, if a minimal
set is not circle-like, one cannot expect to model the minimal set arbitrarily well with a
tube homeomorphic to a solid torus.

with s1 v s1 denoting the wedge of two circles, Denjoy minimal sets are not circle-
like, but instead args! v $1)-like, as shown in [3] where the Denjoy minimal sbt,
corresponding to the irrational numberis represented as the inverse limit of an inverse
sequence ofSt v §1)’s, the projections oD, onto the factos® v § spaces providing the
e-maps. AndD,, is not circle-like; otherwiseD, would be the inverse limit of circles [22]
and (by the continuity o€ech cohomologyH (D) would then have torsion-free rank
one or less, but (as we shall séé}(Do,) is isomorphic taZ2 and so has torsion-free rank
two; see [12] for a discussion of torsion-free rank. Generally, the linking homomorphism
is a more appropriate way of characterizing the linking of minimal sets which are not
circle-like.
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2. Thelinking homomor phism

Many one-dimensional minimal sets have trivial singular (co)homology (denfdted
and H1) but telling Cech (co)homology. (We shall always use integer coefficients.) When
M is not a periodic orbit, any maf! — M must be inessential since the image must be
contained in a path component and so must be an arc or a point. Solenoids, for example,
have trivial H; and H1, but their one-dimensionalech cohomology is sufficient for a
topological classification [23]. For a Denjoy minimal sbBt, there is an inverse limit
representation [3]

stystglyst 2 gtyst B p,
where the bonding mapg depend on the continued fraction expansiomxpbut where
eachf; (independent of andi) induces isomorphisms di1(S* v 1) and H1(s1 v §1)
which can be represented by matricesSln(Z,Z). Thus, by continuity,H1(D,) and
Hl(pa) are both isomorphic t@2 while having trivial H; and H1. For this reason we
useCech (co)homology.
While we are primarily interested in the linking of minimal sets, we shall define the

linking homomorphism for two disjoint, one-dimensional, compact subgetf’ c R3 ¢
$3. Alexander duality provides an isomorphism

A: HYM) ~ Hi(R® — M)
where

HYM) =lim{H'(U) | U is a neighborhood aff }

and the system is directed by reverse inclusion and the associated homomorphisms are
induced by inclusion. To couch everything in term<G&ch (co)homology, we utilize the
isomorphism (see [8, VIII;13.17])

i Hi(R® — M) ~ H1(R® — M)

known to exist sinc&R® — M is a manifold. Hevreﬁl is given by taking the inverse limit
of the dual to the direct sequence used to deHr%eV\{ith j: M’ — R3 — M denoting the
inclusion, theinking homomorphism A : Hy(M') — H(M) is given by

. -1 1
A ER (M) 25 By (R — M) % Hy(RS - M)~ F ),

3. Thelinking of Denjoy minimal sets

Denjoy continua form a natural class of minimal sets to which the linking homomor-
phism applies well. Given two minimal sef# and M’ in R® and homeomorphisms
h:M — D, andh’:M' — D,, we have the inverse limit representations as indicated
above and corresponding projectiongp;) : Dy (D) — s1 v §1 onto the factor spaces.
Sinces! v $1is an ANR, each of the maps o h and p; o h’ extends to a neighborhood
U; or U/, which (by using finitely many flowbox neighborhoods coverdgndM’) may
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be chosen to homotopically retract to a copyséfv S1. Since the bonding maps induce
isomorphisms on (co)homology, the homomorphism

HYU) - HY(M) = |i£1{H1(U) |Mc U}

given by identifyingH(U;) with its occurrence in the direct system definiAd (M) is
thus in an isomorphism. Similar observations apply#g M) and M’. Thus, choosing
such neighborhoods; andU; disjoint, we have the following scenario:

. T -1 -1
ATEy (M) L HiRE—M) 07 gyRe— vy HE(M)
AHL(U)) HY(U)

In the cases we shall examine, there is a Mayer-Vietoris decompoéitienA U B and
U! = A’ U B’ with each of the setd, B, A’ and B’ homotopically equivalent to a circle.
Associated with each of these four sets (oriented to go with the flow) is a basis element for
(co)homology which admit isomorphisms

Hi(U))~Z% and HYU)~Z?
associatingd1(A’) ~ (1, 0) and H1(B’) ~ (0, 1) and similarly forU;. Then the homomor-
phisma can be represented by a22 integer matrix.(M, M’) which then also represents
A. Of course (M, M") depends on our choice of neighborhoods, amounting to a choice
of bases foH1 (M) and H1(M).

Recall that two integer matrices and L’ are equivalent if there are matrices¥
andY invertible overZ with L’ = XLY. By a theorem of Smith, any integer matrix is
equivalent to exactly one matrix having entries, . . ., my only along its leading diagonal
and satisfying the condition that; dividesm; 1 fori =1,...,k — 1. This uniquely
determined diagonal matrix is known as tB®ith normal form. Thus, the Smith normal
form and absolute value of the determinani¢#/, M’) are invariants ofA.

To calculatern(M, M’), observe that the first entry @a{M, M’) represents the standard
linking number of the circles to which andA’” homotopically deform since following the
diagram for this entry yields the standard linking homomorphism. Hence, all the standard
techniques to calculate this linking number apply; see [25] for a list of such techniques, the
most practical of these techniques perhaps being the counting of under/over crossings of a
regular projection. Ordinarily the sign of the linking number is considered irrelevant and
is regarded as positive in all events, which can always be achieved by changing the choice
of basis element in one of the groups. We must however choose consistent orientations in
calculating the entries and so some of the entries may not be positive. All four entries are
then obtained by calculating the appropriate linking numbers. Reversing the rodés of
andM’ and using the same pair of neighborhoods to calculate the matrix representation of
A then transposes the matrix since the linking number of circles is unchanged by reversing
the roles of the circles.

In a similar way, one can compute the linking homomorphism between a periodic orbit
and a Denjoy continuum. In this case the homomorphism will be represented lgy2a 1
matrix or its transpose. In Section 6 we shall investigate the linking of Denjoy minimal sets
within the Lorenz template.
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4. Minimal sets having minimal block growth

We now turn to the problem of identifying Denjoy continua as minimal sets of well-
studied flows by determining which classes of minimal subshifts of the full shift on finitely
many symbols are Denjoy continua in their suspended flows. This will allow us then to
measure the linking of Denjoy minimal sets as they occur in some natural settings.

We follow the presentations in [16,24] to define the minirSairmian subshift of the
full shift on two symbolg($2, o) correspondingte € [0, 1] — Q. With 7 :R — R/Z = §1t
denoting the quotient map, lgt, : ST — S be the rotation given by (r) — 7 (¢ + o) and
let A~ =7 ([0,a)) andA™ = ((0, «]). Forz € R, define the sequences = (1;1),cz and
tm = <tn_>neZ by

ot pl(m (1) ¢ AY,
" 1 if pl(m(1)) € AT,
and

_ 0 ifpl(n()¢A™,
" 1 ifpt(r() €A™,

Then2, ={tT |t e R}U{t~ |t € R} is a minimal set of£2, o). We see that™ =t~ for
t ¢ {na | n € Z} and that forn € Z andt = na, the shift orbitse” (t*) ando™ (t~) ap-
proach each other asymptoticallyras— 400, meaning limy,_, o0 d(c™ (), 6™ (t7)) =
0. Moreover, these are the only such orbits. Now definé2, — S, by

FtH)=f(t7)=n@.
Then f~1(f(x)) = x provided

xgé{t"'lt:na, neZ}U{t_ltzna, neZ},
and for

xe{t"'lt:na, neZ}U{t_ltzna, neZ}

f~1(f(x)) is atwo point set. What is mor¢, provides a semiconjugacy (homomorphism):
pao f=foolg,.

Let us recall the construction of the standar®enjoy homeomorphism af!. Starting
with a single point, sayr (0) € S, one replaces the orbfip’ (7 (0))},ez with a sequence
of intervalsp}, (7t (0)) ~ I, with lengths going to 0 a8 — F-oco to obtain a homeomorph
of §1, says’; see, e.g., [26]. Then by mapping each interjahomeomorphically onto
I,11 in an orientation preserving way and by mapping all other point§ @b the point
determined byp,,, we obtain a Denjoy homeomorphisin: S’ — S’ which has a unique
minimal setD,, the Cantor set formed by taking the complement of the interior of the
intervalsl,, n € Z. We denote the points @, — |,z I, by the pointr (r) of S from
which it was derived and we label the intervglso that it goes from the point, to the
pointb, as we follow the orientation. We then have a natural homeomorphisgy, ~ D,
given by

h(tT)=h(t")=n@) fort+#na
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and forr = na
h(t™)=a, and h(t")=b,,

andh also provides a conjugacy ofl, to the restriction of the Denjoy homeomorphism
to D, . By taking the suspension of|, we then obtain a one-dimensional minimal flow
which is topologically conjugate to the standard Denjoy flowign

In what follows, (X, o) denotes the full shift on an alphabet of finitely many symbols.
With P(S,n) denoting the number of distinet-blocks that occur ir§ ¢ X, a minimal
subshift(S, o|s) satisfiesP(S,n) =n + 1 for all n if and only if S = 2, for somea by
the results of [7]. The propert®(S,n) =n + 1 is not a conjugacy invariant of subshifts;
however, the propert® (S, n) < n+ K for some fixedk and alln is a conjugacy invariant
of minimal subshifts, and any minimal subshift satisfying this condition is said to have
minimal block growth [24]. Clearly any periodic or Sturmian minimal set has minimal
block growth, but the class of aperiodic minimal sets having minimal block growth includes
some minimal sets which are not conjugate to any Sturmian minimal set. And yet, the
following does hold.

Theorem 1. A one-dimensional minimal set obtained from the suspension of an aperiodic
minimal subshift (S, o|s) ishomeomorphicto a Denjoy continuumif (S, o|s) isof minimal
block growth.

Proof. As shown in [24, 4.2], any minimal s€tS, o|s) of minimal block growth is
obtained from a Sturmian by the composition of a sliding block code and a substitution.
A sliding block code yields a conjugacy of symbolic systems, so it is clear that two
symbolic systems related laysliding block code have homeomorphic suspensions. Recall
that a homeomorphisin: X — X is totally minimal provided that:” is minimal for each
positive integen. In [24, 4.1] it is shown that a totally minimal subshift of minimal block
growth is conjugate to a Sturmian subshift via a sliding block code.

A substitution of lengthN associates to each symbelin the alphabet4 of the
original symbolic system ai-block 6(a) from an alphabeB. This then induces a map
of bisequences ofl to those off3:

XX 1. XOXL... > 0(x_2)0(x_1).0(x0)0(x1). ...

If a substitution of lengthV is applied to a symbolic system, then the substituted system is
generally not conjugate to the original systeThe argument of [24, 4.2] goes as follows:
given (S, o) of minimal block growth eithe(S, o|s) is totally minimal (in which case

we have a subshift conjugate to a Sturmian via a sliding block code), or there is a prime
po such thai( s, (o|s)??) is not minimal. We then need only treat the second case. One can
then show thas breaks intopg clopen subset§So, ..., Sp,—1} which are invariant under
(o]s)P?, and in this casés, o|s) is conjugate to

A:Sox{0,...,po—1}— Sox {0, ..., po—1}

) (s,i+1), if i <po—1,
(D=1 ((015)7(s),0) i i = po— 1.



A. Clark, M.C. Qullivan / Topology and its Applications 141 (2004) 125-145 131

Figuratively, this is a finite adding machine structure superimpose@ @)”°. What is
important to the proof of [24, 4.2] is that one can realize the first return map to one of these
po clopen setss; (which is conjugate tdo |s)?°) by applying a simple substitution to the
original (S, o|s), which at the same time reduces tKeas in the definition of minimal

block growth, i.e., the block growth decreases in complexity after this substitution. One
then repeats the argument f@;, (o|s)?°) until finally one must reach a totally minimal
system, possibly a Sturmian (which are unique among all aperiodic minimal subshifts in
havingK = 1). That is to say that after a finite number of stages and corresponding primes
po, - .., px one obtains that the original systei, o|s) decomposes intgg---pr = N

clopen subset€y, ..., Cy_1, each of which is invariant undée | )", which is also the

first return map to eact;. This first return mago|s)" is then conjugate to a Sturmian
subshift and hence is conjugate to the return map to a clopen subset of the minimal set
of a Denjoy homeomorphism. The suspended flows are therefore topologically equivalent
by theorems of Aarts and Martens [1,2], meaning that there is a homeomorphism of the
two sets which preserves the orientation of orbits. Hence, the suspension of any aperiodic
subshift of minimal block growth is topologically equivalent to a flow on a Denjoy
continuum. O

It is well known that the collection of periodic orbits 0f2, o) is dense in2. Since
the orbits of the suspension ¢f, are not Lyapunov stable (or equicontinuous), it is not
possible for periodic orbits to follow these orbits arbitrarily closely. Hence, we should not
really think of the periodic orbits as modeling all the orbits of the flow. The following
extends some results in [6], where it is shown that the union of all Denjoy minimal sets
in the full shift is dense in the full shift on two symbols. (In [6] a Denjoy minimal set is
allowed to have more than one pair of asymptotic orbits, but here we have just one such

pair.)

Theorem 2. For any given « € [0, 1] — Q, the collection of points of > belonging to a
minimal set which in the suspension flow is homeomor phic to the Denjoy set D,, isa dense
subset of X.

Proof. LetX = (x,),ez € X and letw = [x_y, ..., xy] be a central word of. Let A be
the alphabet of words of lengthi\2+ 1 from X and let(£2 4, 0 4) be the full shift on the
bisequences afl. Consider then thé2N + 1) higher power code : ¥ — 2 4 given by

(Zn)nez
iy
Z(N+1) Z-N IN+1
Z—(3N+1) ZN Z3N+1

It then follows thaty o 0 @¥*D =54 0 y (see, e.g., [21, Section 1.4]). Then form a
Sturmian sequencefrom £2, on the symbol corresponding te and some other symbol
in A. Then the closure of in 24 will be a4 minimal setM conjugate to the shift on



132 A. Clark, M.C. Qullivan / Topology and its Applications 141 (2004) 125-145

2,. ThenM’ = y~1(M) will have a point (bisequence) agreeing witton the central
block corresponding ta. In the suspension flow, this set will have a tim¥ 2- 1 map on

a Cantor set cross-section that is conjugate to the shifepas follows from the relation

y 0@+t = 51 0 y. And so rescaling time by this factor in the suspension yields a
homeomorphism between the suspended minimal set and the suspensignramely

D, . We have essentially realized a sequence from a substituted imayeagfreeing with

the original sequence on a centhablock. By choosingV large enough we may thus find
points from a minimal set homeomorphiciy, arbitrarily close tax. O

5. Templates

A template is a compact branched 2-manifold with boundary together with a smooth
expansive semi-flow. The example we study here is calleddhanz templateand is shown
in Fig. 1. The semi-flow proceeds downwarom the branch line the splits and loops
around. The orbits merge at the branch line and many orbits exit just below the middle
portion of the branch line. The non-wandering set of the semi-flow is locally an interval
cross a Cantor set, except for points in the branch line where it is homeomorphic to the
product of a 'Y” and a Cantor set. We shall take the intersection of the branch line and the
non-wandering set to be the middle thirds Cantor set, associating the segugnge. . .)
with 322, % The first return map for this invariant Cantor set is the one-sided (right)
shift on 2 symbols:

(x0, X1, ...) = {(x1,x2,...).

There is an extensive literature tamplate theory. Templates where introduced to study
strange attractors by Williams [28] but are used to model other types of invariant sets in
flows. The template form used here is a model for a chaotic saddle s&rialaflow; see,

e.g., [27]. Etnyre and Ghrist [9] have used templates to model flows inducedrigct
structures with an eye towards applications in hydrodynamics, while Gilmore and others
have used templates to study attractors in various time series data; see [15].

Templates are constructed from invariant sets of hyperbolic flows on 3-manifolds

as follows. An isolating neighborhood is foliated by strong stable manifolds of orbits.

Fig. 1. Lorenz template.
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Collapsing along the stable direction results in a branched 2-manifold with an induced
semi-flow. The original invariant set can be recovered by an inverse limit. In the collapsing
many orbits are identified. But periodic orbits, and the manner in which they are knotted
and linked, are preserved in the template model. This was proven in [5], and a proof
can also be found in the book [14, p. 38]. In the latter reference it is noted that on the
level of the symbolic dynamics the collapgiidentifies those orbits approach each other
asymptotically in forward time [14, p. 42]: two orbits;);cz and(y;);cz of the invariant

set collapsed onto the branch line are identified on the branch line if and onlif; for

i > 0. Itis important to note that the collapsing takes place along the stable manifolds, and
thus the collapsed template can be obtained by homotoping the original invariant set into
its collapsed form. Also, since any two distinct minimal sets do not have asymptotic orbits
in common, the collapsing only identifies orbits within individual minimal sets. Thus, the
“Fundamental Theorem of Templates” extends to other, aperiodic, minimal sets.

Theorem 3. Given a flow ¢ on a 3-manifold M with a hyperbolic chain-recurrent set, the
collection of minimal sets is in bijective correspondence with the collection of minimal
sets of the corresponding template(s). And, for any pair of minimal sets of minimal block
growth in the same component of the chain recurrent set of ¢, the Smith normal form of the
linking homomor phismis the same as the Smith normal form of the linking homomor phism
of the corresponding minimal setsin the template model.

All previous work on template theory has focused on the study of the periodic orbits.
This is the first paper to examine aperiodic minimal sets.

6. Sturmian linksin the Lorenz template

Now we apply the theory to calculate linking matrices for minimal sets of minimal
block growth in the Lorenz template, focusing on Sturmian minimal sets. First we develop a
convenientway of describing tubular neighboods in the template. It is to be recalled that
eachs$2, has two asymptotic orbits correspondingto and0~ whose forward orbits are
eventually identified in the template. However, by Theorem 3, the linking for the collapsed
minimal sets in the templat&, and the original are the same. Hereafter, we shall only
consider the collapsed minimal sets they occur within the template.

Definition 1. For a givenwordv = wo ... w,—1, let[w] be the cylindricakw-neighborhood
given by the smallest closed segment of the branch line containing all words starting with
w together with the forward orbit of all such points up to and including the first return to
the branch line.

Definition 2. Given a minimal set or wor in a shift, £,(X) denotes the collection of
words of length: occurring inX.

This allows us to define the following sequence of neighborhoods of the suspended
Sturmian minimal ses,, in the template.
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Fig. 2. Two Sturmian minimal sets.

Fig. 3. Trefoil orbit and93_2/3.

Definition 3. Givenann € {1, 2, .. .}, let

Ue E w1 w € £a(20)}-

Then(, UY = Sy. The linking of S, and Sg can then be measured by finding an

for whichU¥ andU,f are disjoint and then measuring the linking of these neighborhoods,
which is possible sincg, andSg are compact and disjoint. The computer plots that follow
illustrate the neighborhoodsg for variousS,, which then allows a calculation of the
linking.

Example 1. Fig. 2 is an overlay ofS;,-13 (black) andSg-1/3 (gray). The Smith normal
form of the linking of these two minimal sets|i§ 9 ].

Example 2. The orbit00101 is a trefoil knot. Lek; = 3-%/3. Then from Fig. 3 we obtain a
linking matrixA (00101, S, ) with Smith normal forni1, O]. In general the linking between

a closed orbit and a Sturmian minimal set carcbaracterized by a single number, the least
common divisor of the entries in any linking matrix (vector).

However, a complete justification of this procedure would involve showing that the
(co)homology of these cylinder neighborhoods are isomorphic to the (direct) inverse limit
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of the systems as described in Section 3. In order to develop an inverse limit representation

of S, naturally related to the: and to justify the linking calculations and to describe

limitations of the linking of Sturmians, we now we bring to bear facts particular to Sturmian

minimal sets. These properties may be found in [10] and are listed here for convenience.
In general,£,(£2,) hasn + 1 elements. Thus, exactly one of theelements of

L,-1(8£2¢) can be extended with either a 0 or 1 to form word€j(£2,,), while all other

words are uniquely extended. It is also known (see, e.g., [10, 6.6.19]} &, ) is closed

under palindromes, meaning that ... w, € £,,(§2,) ifand only if w,, ... w1 € £,,(£2y).

Definition 4. The unique word inC, (£2,,) that can be extended in two ways on the right
to form a word inL,+1(£2¢) is denoted-, while £ denotes the unique word iy, (2,)
that can be extended in two ways on the left.

These ambiguously extended words can be identified with the help of the two
asymptotic sequences:
0;;0 = 030{0{0; ...=01upuz... and
0,50=070;0;03...=10u2us....

¥

Theniuous...u, fori € {0, 1} are both inL, (£2,), implying thatuous...u, = £;,_, and
thatry_, is the palindrome of?_,. In the computer plots, one can detect Wegige point
D rad] 2“3','?1, where the two asymptotic orbits merge on the branch line, by the coincidence
of the terminus of the two cylindeifg¢3], i = 1, 2 at the initial part of the cylindeez].
One can also see that exactly one cylinder set has a terminus coinciding with the initial part
of two cylinders, seen as a splittingz ] feeds intq[ryi], fori =1, 2.

For any givenx, £2(£2,) = 3, and an examination of the sequen@&sand0~ reveals
that{01, 10} C L2(£2,). Thus, the following notion is well-defined.

Definition 5. A Sturmian minimal set2, or one of its elements is d@fpe O or of type 1
according as 0@ £2(82,) or 11e L2(£2,), denotedr (£2,) = 0 or 1 accordingly.

Definition 6. Fori =0, 1 leto; be the substitution of induced by the function dfo, 1}
oi(i)=1i; o;(i)=1i'i
wherei’ =1 —i mod 2. That is,

o; ((. L X_2X_1.X0X1.. .)) = ( .0 (x_2)oi(x_1) . g; (x0)o; (x1) .. )

Definition 7. For u € 2, of typei € {0, 1}, let ¢ (u) be the uniquev € 2 with either
o;(v) =uoro(o;(v)) =u.

Definition 8. Theadditive coding sequence of £2,, is the sequence

(z(¢"0))zo
foranyu € 2.
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Definition 9. If the additive coding sequence &, is written
0%1%0%2. . .,

whereag > 0 andg; > 1 fori > 0 denote the number of consecutive Q’syen) or 1's
(i odd) occurring in the corresponding portion of the additive coding sequence, then the
sequence

(a )?io

is themultiplicative coding sequence.

Theorem 4. The multiplicative coding sequence (a;);°, of £2, is equivalent to the

continued fraction expansion of «; i.e., the continued fraction expansion of « and (a;)2,
have a common tail [10, 6.4.23]

We now describe a way of collapsing the cylindrical neighborhoods in such a way as
to obtain a natural inverse limit representation of fige Similar constructions provide a
systematic way of calculating the linking matrix, yielding very general descriptions of the
linking of different types of Sturmians.

By identifying to a point all points within the cylind¢@] that are in the same suspension
flow time from the branch line and similarly fgd], we obtains? v 1 = X, with the
branch line (which corresponds to the terminus of H6jland[1]) mapping to the wedge
point and each of the cylindeyselding one of the circles. ithe same time this provides a
projection ofS, to Xg. We assume now without loss of generality thatis of type Q The
neighborhood/5 has three cylinderg00], [10] and[01]. As indicated in Fig. 6, we can
find a subtemplate of the original Lorenz template, where this subtemplate has an extra full
twist on the right, 1 side. In the terminology of [14], the subtemplate is of ik 2),
just as the subtemplate in [14, 2.4.7].

We now form a wedge of two circle¥; in much the same way. We identify to a point
all points within the cylindef00] that are in the same suspension flow time from the
branch line. Since 11 is not an allowed word for a type 0 Sturmian, there are two cases: (a)
[r31=100] or (b) [75] =[10Q]. In case (a), this process identifies the initial segment of the
cylinders[00] and[01] to a single point. Then we apply a similar process to the cylinders
[01] and[10]. In case (b) we see that the cylinder leading fifd@] feeds into the same pair
of cylinders[00] and[01]. This identification then leads to a wedge of two circles in either
case: one circle corresponding to the cylinf#] and the other corresponding[i®l] and
[10]. In either case, the initial segmei®X, %] along the original branch line corresponds to
the wedge point. Also, we can see that the inclusion of the uncollapsed cylinders on this
level into the preceding level naturally induces a nfapX1 — Xo that can be represented
by the matrixJ def ((1) i). Notice that this map induces an isomorphism of (co)homology
and an isomorphism of fundamental groups.

This subtemplate, has a natural symbolic representation where the portion of the original
branch line corresponding {6, %] is recoded as 0 and the portion correspondir@@]
is recoded as 1, as indicated in Fig. 6. The symbolic representation of the points of the
original Sturmian with respect to this new coding corresponds to the sequente24n
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as described in Definition 8. It is importatat note that the subshift corresponding to the
recoding of the original Sturmian is again Sturmian.

Now we treat this subtemplate and the original minimal set within this subtemplate just
as we did the original template. The ogled Sturmian is of type 0 or 1 according as the
original Sturmian has additive coding sequence beginning with 00 o864 Fig. 7 for a
picture of the subsubtemplate corresponding to the 01 case. In either case, after identifying
points in the same way as before, we are led to a wedge of two cikgleend a map
f2: X2 — X1 represented by the matrik or its transposéd ', according as we are in the
00 or 01 case.

Repeating this process iteratively, we obtain an inverse sequéhce;) with inverse
limit lim (X;, f;) homeomorphic t&5, since the cross-sectional diameter of the cylinders

goes to 0 a$ — oo, as can be seen by recalling that any cylinder feeds into at most two
cylinders. Thus, for any given > 0, for sufficiently largei the projectionS, — X; is an
e-map. Notice that the bonding maps of bogpés induce isomorphisms of fundamental
groups and (co)homology.

Notice the similarity of this inverse limit representation with that found in [3]. The
number of bonding maps in a row of the fothror J T is determined by the multiplicative
coding sequence far and thus is determined by the continued fraction expansion of
a by Theorem 4. It follows that itx and 8 have continued fraction expansions with a
common tail, then the correspondifig andSg are homeomorphic. T and its converse
are shown in [3,11] for the uncollapsed Denjoy minimal g&isand Dg. For the purposes
of topologically classifying the suspension of Sturmian minimal sets, only the tail ends of
the continued fraction expansion are relevant. However, we shall soon see that only the
beginnings of the inverse limit expansions are relevant for the linking. To determine the
linking of two SturmiansSp and S; with additive coding sequenceés;):°, and(8;):°,,
with o; = B, i <k, andags1 # Br+1, We take subtemplates of typg, then of type
az,...,ar. Then the recoded Sturmians will be of different types. In principle, as will
become evident below, this then allows us to calculate the linking matrix.

The first proposition foreshadows the Istyof the arguments to follow and is of
independent interest.

Proposition 1. Let y bethe periodic orbit for (01)°°. Let S, be any Surmian minimal set.
Then

A(Se,y)~[1 Ol

Proof. Without loss of generality suppos%® is of type 0. Recall that we parameterize

the branch line of the Lorenz template from left to right as the closed unit intgdya].

Let p £y N 1o, 11, with associated sequence 010101and letg e [5. 1], with

associated sequence 101010 Since any 1 in the sequence for a pointSpfalong the
branch line is followed by a,Gany point ofS, N [0, %] is to the left of p and any point
of S¢ N [%, 1] is to the left ofg. Consider the first subtemplate neighborhoodS$gras
described above, with one “tube” corresponding to the cylii@i@y and the other t¢01]
together with[10]. The portion ofS,, in the[00] tube and its first return to the branch line
is entirely to the left ofy. Thus, it does not link at all withr, and soi(y, S) ~ [n, 0], with
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Fig. 4. A Sturmian and thé01)*° orbit.

then corresponding to the linking of the portion §f in [01], [10] tube. Sincey and S,

satisfy the branch line ordering described above, we can choose the tubular neighborhood
corresponding t¢01], [10] to be entirely to the left (at the branch line) pf This tube

then has only one over-crossing with Thus,A(y, S) ~ [1, 0]. See Fig. 4 for a typical
example. O

There seems to be no such rigidity in the linking of other minimal setgyamhetween
Sturmian minimal sets and other periodic orbits. The periodic orhi06f)*> and Sl/ﬁ
have linking matrix with normal formi1 0], while the same periodic orbit anijfz/3
have linking matrix with normal fornp2 0].

The next few propositions and examples explore the 2 linking matrix of pairs
of Sturmian minimal sets. Computer plots are helpful, but the images quickly become
impossible to resolve visually when two Sturmians share the first few terms in their additive
sequence. (An illustration of why we shouldt let our students become too dependent on
graphing calculators.)

Proposition 2. Let Sop and S1 be Sturmian minimal sets of type 0 and 1, respectively. Then

A(So, S1) & |:é 0i| .

Proof. Since points 051 N[0, 1] have no consecutive Q's, as in Proposition 1 the left most
point of S1 N [0, %] is to the right of the right most point &y N [0, %] and the left most
point of S1 N [%, 1] is to the right of the right most point d&fy N [%, 1]. A typical example

is illustrated in Fig. 5. Then we can measure the linkings@fand S1 by examining the
neighborhood corresponding to tf@0] tube andO01], [10] tube ofSp and the[11] tube
and[10], [01] tube of S1 since all portions of the minimal sets within th@l], [10] tubes
are on opposite cross-sectional ends. Therf@gtube of Sg does not link at all withS;.
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Fig. 5. Sturmians of type 0 and 1.

Similarly, the[11] tube of S1 does not link withSg. The [01], [10] tube of Sy crosses over
the[10], [01] tube ofS1 once, and so

10
A(S1, S2) & |:0 i| . O

Each of the following propositions naturalijjields another pposition obtained by
reversing the roles of 0 and 1

Corollary 1. If we replace the Lorenz template £(0, 0) in Proposition 2 with £(0, 2n),
n > 0, then the same conclusion holds.

Proof. With an even number of twists the lexicographical ordering of the branch line and
returns to it works as before. Now the long tubeSgfcrosses over thgl1] tube of S1 n
times, and it crosses over the long tubeSefz + 1 times. Thg00] tube of Sp still misses

S1. Thus,

n 01 [1 0
MSO’Sl)N[n—i-l o}”[o o]' O

Proposition 3. For i =0, 11et S; be Sturmian minimal setswith additive coding sequences
beginning with m; consecutive 0's satisfying mg > m1 > 0. That is, the additive coding
sequences are of theform 0™i1.... Then

10
1(So, S1) ~ [0 O]

Proof. As in the formation of the inverse sequence, we iteratively form type 0
subtemplates of the original tengpé. This is then a template of typ&0, 2m1). On
this subtemplate, the recoded Sturmian systemsSdaand S1 are of type 0 and type 1,
respectively. Thus, by Corollary 1 we obtain the desired result.
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Fig. 6.L(0, 2).

Proposition 4. Let Sp and S1 be Sturmian minimal sets whose additive recoding sequences
start with 010and 011, respectively. Then

A(So, S1) ~ |:é 0i| .

Proof. It is now difficult to visualizeSg and S1 distinctly on the Lorenz template. As
indicated in Figs. 6 and 7, we first take a type 0 and then a type 1 subtemplate. On this
subsubtemplatesg is of type 0 andS; is of type 1 Then Fig. 8 shows a choice of tubes
systems, where thf0] and [01] cylinders are conflated below the branch line for the
ease of computer drawing. (This has no effect on the linking calculation.) In this and the
following figure, a small box with the numbe¥ in it representsv half-twists of the band
inside the box. This yields:

1 3 10
)»(SQ,S]_)%[Z 6j|r’¢5|:0 O]. O
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Fig. 8. Tubular neighborhoods.
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N AN NN

UL UL

Fig. 9. Template for Proposition 5.

Proposition 5. Let §1 and S2 be Sturmian minimal sets whose additive recoding sequences
start with 0100and 0101, respectively. Then

1 0
)»(51,52)%[0 0:|-

Proof. A further iteration of the procedure used in Proposition 4 yields the subsubsubtem-
plate and tube systems shown in Fig. 9. (In this figure and the next, a box covering two
bands with a numbed represents band crossings, left over right, with no twisting.)
Thus,

3 57 [1 0
’\(51’52)“[9 15}2[0 o] O
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Fig. 10. Template for Proposition 6.

The reader may be wondering if the linking matrix for any pair of Sturmian minimal
sets is[cl, 8]. Indeed, for a time we had hoped to prove that this was the case. However, the
following shows this is not so.

Proposition 6. Let Sp and S1 be Sturmian minimal sets whose additive recoding sequences
start with 0110and 0111, respectively. Then

A(S1, So) & I:é 0i| .

Proof. A further iteration of the procedure usé Proposition 4 yields the template and
tube systems shown in Fig. 10. Thus,

2 7 10
’\(51’52)%[3 11]:[0 1}' o
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Non-Sturmian minimal sets of minimal block growth are much more flexible in their

linking behavior. For example, if one applies the substitutiof i 0100 1 5 0011 to
the Fibonacci substitution minimal set, one obtains a minimalMesf minimal block
growth. The linking matrix of the suspension df andSl/ﬁ has Smith normal form

o2

The apparent simplicity of the Smith normal forms for linking matrices of pairs of
Sturmian minimal sets in the Lorenz template is surprising and intriguing.

Question. Given the additive coding sequence of two Sturmian minimal sets, what is the
Smith normal form of the matrix representing their linking?

While we do not currently have an answer to this question, our procedure for taking
subtemplates of the appropriate type uptile reaches a subtemplate for which the two
minimal sets are of different types does lead to the following general observation.

Theorem 5. Any two Surmian minimal sets in the Lorenz template have a linking matrix
with non-zero Smith normal form and so are essentially linked.
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