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It happens on occasion that a student in my multivariable calculus
class (Calculus III at my university) has already had linear algebra.
And, sometimes it even transpires that a student in my sophomore
linear algebra class has had multivariable calculus. When either of
these situations arise, I pull said student aside a talk to them about
the divergence and curl of linear vectors fields.

I’d love to find a way to cover the connection between linear alge-
bra and vector fields in either course, but to date I have failed. The
textbooks and syllabi are disjoint. The situation reminds me of those
plates children use so that different types of food will not touch. Here
we outline some talking points that instructors can explore with stu-
dents who have drunk from both cups and conclude with some open
ended questions.

Let A be a 3×3 matrix of real constants and v be the column vector
of variables [x, y, z]T . Then v′ = Av is a system of linear differential
equations. But Av can also be viewed as a vector field and one can
apply the usual tools from vector calculus. The following facts are
interesting and easy to verify.
• divAv is the sum of the eigenvalues of A. It is easy to check that

divAv equals the trace of A. Then we recall that the trace of a matrix
is invariant under similarity and hence under diagonalization. What’s
interesting is that this helps students connect the geometric idea be-
hind eigenvalues and the physical idea behind divergence, hopefully
re-enforcing both concepts.
• Regarding the set a linear vector fields on R

3 as a nine dimensional
vector space under matrix addition, the set of divergence zero fields is
an eight dimensional subspace.
• curlAv = 0 if and only if A = AT , thus, if and only if the eigenval-

ues are real and the eigenspaces are orthogonal. Hence the irrotational
fields form a six dimensional subspace. The intersection of the sets of
curl and divergence free linear fields is five dimensional.
• If curlAv = 0 then the potential function is
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up to any constant, where A =





a b c

b e f

c f i



. This is easy to check. It

generalizes that
∫

ax dx = a

2
x2 + C in single variable calculus, but in

3-space we need that assumption that the field is irrotational which
can be thought of as being true by default on the real line.
• Now think about our last two observations. Your student should

be familiar with the quadratic surfaces. The level sets of the potential
functions above are just rotations of these. (Some linear algebra texts
cover this fact under the rubric of quadratic forms.) In hindsight,
doesn’t it make sense that the symmetry of the level surfaces would
require the eigenspaces to be real and orthogonal thus forcing A = AT ?
• Divergence and curl should behave naturally when we rotate a

linear vector field. Let R be a 3 × 3 rotation matrix. Then from our
geometric intuition we expect

divR−1ARv = divAv

and

curlR−1ARv = R−1
curlAv.

The first equation holds since A is similar to R−1AR and so they have
the same trace. To prove the second you can grind out both sides and
then simplify using two facts about rotation matrices, RRT = I and
det R = 1. The calculations are messy but straight forward.
• It is shown in most vector calculus texts that for a pure rotation

about the z-axis the curl is normal to the xy-plane with magnitude
twice the angular velocity. We can generalize this to the case were we
have complex eigenvalues λ ± iµ and the real eigenvector is normal to
the invariant plane spanned by the real and imaginary parts of either
of the complex eigenvectors. The real eigenvalue, and the real parts of
the complex eigenvalues have no effect on curl; it will be normal to the
invariant plane (use our rotations result) and have magnitude 2|µ|; its
direction still follows the right hand rule.

But as soon as the real eigenspace is no longer normal to the invari-
ant plane, the direction and magnitude of the curl vector cease to be
obvious. I leave you with this challenge.

In the case where the matrix has a pair of complex eigenvalues find
a relationship between the curl vector and the direction of the real
eigenspace when it is not perpendicular to the invariant plane.
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For example you might start with

A =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 .

This matrix rotates vectors in the xy-plane by θ radians and fixes the
z-axis, that is the z-axis is an eigenspace with eigenvalue one. Then
curlAv = (2 sin θ)k. What happens to the curl when we pull the real
eigenspace a little toward the x-axis, say with azimuthal angle φ? Can
you develope an intuitive sense for the behavior of curl? First you’ll
need to figure how A changes.

If the eigenvalues are real it would also be interesting to discover
an intuitive understanding of the curl. One might start with some
irrotational linear vector fields and then observe where the curl vector
appears when small changes are made.

I wrote a Maple program that for a given 3× 3 matrix will plot real
eigenvectors (or generalized eigenvectors) and an invariant plane when
there is a pair of complex eigenvalues, and the curl vector. A typical

output is shown in Figure 1, where input matrix was





−2 2 −3
2 −2 1
3 −2 −1



.

The program also reports that the complex eigenvalues are −2.159891038±
2.171695094 ∗ I; that the invariant plane is given by −.2459118507e−
1 ∗ x + .8229181570 ∗ y − .5676275016 ∗ z = 0; that the real eigenvalue
is 0.3197820749 with eiganspace spanned by [−.2376202145e− 1 + 0. ∗
I,−.331739142e− 1 + 0. ∗ I,−.3741705e − 2 + 0. ∗ I]; and finally that
the curl vector is [−1.,−6., 0.]. In Figure 1 the curl vector is shown
based at the origin. Of course the curl field is this vector at each point
of R

3.
I played with many other examples but never did find a pattern I

could state as a theorem. Maybe you or your students will have better
luck. You can download the program I wrote from

http://galileo.math.siu.edu/∼msulliva/Curl
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Figure 1. An invariant plane with a normal axis (blue),
the real eigenspace (dashed red line) and the curl vector
(black).


