
THE TOPOLOGY AND DYNAMICS OF FLOWS

MICHAEL C. SULLIVAN

Abstract. After a brief survey of various types of flows (Morse-Smale, Smale,
Anosov, & partially hyperbolic) we focus on Smale flows on S3. However, we
do give some consideration to Smale flows on other three-manifolds and to
Smale diffeomorphisms.

Flows

Let M be a compact connected Riemannian manifold without boundary. Let
|| · || be the norm on the tangent bundle TM and d(·, ·) the metric induced on
M . By a flow on M we mean a smooth function f : M × R → M such that
f(f(x, s), t) = f(x, s + t) and f(x, 0) = x. Much of what we describe in this
sections for flows carries over with suitable modifications to diffeomorphisms.

The chain recurrent set of a flow f is

R = {x ∈ M | ∀ε > 0, ∃ {x0 = x, x1, x2, . . . , xk} ⊂ M &

{t1, t2, . . . , tk} ⊂ R
+ such that

d(f(xi, ti), xi+1) < ε, i = 1, . . . , k − 1, and d(f(xk, tk), x0) < ε}

The chain recurrent set of a flow is said to have a hyperbolic structure if the
tangent bundle of the manifold structure can be written as a Whitney sum TR =
Eu

⊕

Ec
⊕

Es of sub-bundles invariant under Df where Ec
x is the subspace of TMx

corresponding to the orbit of x and such that there are constants C > 0 and λ > 0
for which ||Dft(v)|| ≤ Ce−λt||x|| for v ∈ Es, t ≥ 0 and ||Dft(v)|| ≥ 1/Ceλt||x|| for
v ∈ Eu, t ≥ 0.

Steve Smale showed that when R is hyperbolic it is the closure of the periodic
orbits of the flow. Smale also showed that when R is hyperbolic it has a finite
decomposition into compact invariant sets called basic sets :

Theorem (Spectral Decomposition Theorem). Suppose that the chain recurrent
set R of a flow has a hyperbolic structure. Then R is a finite disjoint union of
compact invariant sets Λ1, Λ2, . . . , Λk where each Λi contains an orbit that is dense
in Λi.

We define respectively the stable and unstable manifolds of an orbit O in a flow
f .

W s(O) = {y ∈ M | d(f(y, t), f(x, t)) → 0 as t → ∞ for some x ∈ O}

W u(O) = {y ∈ M | d(f(y, t), f(x, t)) → 0 as t → −∞ for some x ∈ O}
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That these are manifolds is a classical result of Hirsch and Pugh [28] referred to
as the Stable Manifold Theorem. A flow is structurally stable if it is topologically
equivalent, i.e. there is a homeomorphism taking orbits to orbits preserving the
flow direction, to flows obtained by small enough perturbations.

A flow with hyperbolic chain recurrent set R satisfies the transversality condi-
tion if the stable and unstable manifolds of R always meet transversally. A flow (or
diffeomorphism) that has a hyperbolic chain recurrent set and satisfies the transver-
sality condition is structurally stable; see [21, Theorem 1.10] for references. The
converse – known as the C1 Stability Conjecture – was proposed by Palis and Smale
in [36] has been proven by Hu [29] for dimension 3 and for arbitrary dimension by
Hayashi [27]; see also [50].

For the three dimensional case the basic sets of C1 structurally stable flows may
be of the following types: isolated fixed points; isolated closed orbits; suspensions of
nontrivial irreducible shifts of finite type (SFTs) (see [30] for definitions of terms for
symbolic dynamics) – these have infinitely many periodic orbits but rational zeta
functions; two-dimensional attractors or repellers, e.g., a suspension of Pylkin’s at-
tractor – these are modeled by inverse limits of branched one-dimensional manifolds
[51]; and lastly, if the invariant hyperbolic set is the whole of M , we have an Anosov
flow.

If the chain recurrent set of a flow is hyperbolic, consists of a finite collection
of periodic orbits and fixed points, and satisfies the transversality condition, we
have a Morse-Smale flow. Daniel Asimov showed that for n 6= 3 all n-manifolds
(possibly with boundary), subject to certain obvious Euler characteristic criteria,
support nonsingular Morse-Smale flows [1]. (A nonsingular flow is just a flow
without fixed points.) John Morgan has characterized which 3-manifolds (possibly
with boundary) support nonsingular Morse-Smale flows [35] and Masaaki Wada
has determined which links can be realized as the invariant set of a nonsingular
Morse-Smale flow on S3 [49]; see also [13]. Wada’s result shows, for example, that
the figure-8 knots cannot be realized in a nonsingular Morse-Smale flow on S3.
Thus, the existence of a figure-8 knot in a Morse-Smale flow on S3 forces a fixed
point. Bifurcations of nonsingular Morse-Smale flows on S3 are studied in [12].
Given a link L in some orientable 3-manifold, Masahico Saito [40] shows how to
modify the 3-manifold (by forming connected sums with S2 × S1 pieces) so that
the new 3-manifold has a nonsingular Morse-Smale flow with L as part of its chain
recurrent set (actually he shows a bit more than this).

If the chain recurrent set of a flow is at most one-dimensional and satisfies the
transversality condition the flow is known as a Smale flow. Basic sets which are
not isolated fix points or closed orbits are suspensions of SFTs and must be saddle
sets. There are no chaotic attractors or repellers.

Anosov flows arose from the study of geodesic flows on surfaces. Thus, “unit
tangent bundles of all surfaces with genus greater than one” support Anosov flows.
And so too do “all manifolds that can be obtained by suspending Anosov diffeomor-
phisms of T 2.” 1 There are no Anosov flows on S3. It is known that a 3-manifold
for which every co-dimension one foliation has a Reeb component does not support

1Keith Burns, private communication.
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an Anosov flow. There are infinity many such manifolds [39]. In general, “[It is]
not known at all which manifolds have Anosov flows.” 2

Question. Which 3-manifolds support Anosov flows? 1001 ?

There has been a great deal of interest in partially hyperbolic flows ; see [38].
These can have singular hyperbolic invariant sets in which a saddle fixed point can-
not be isolated from an invariant set with infinitely many periodic orbits. Together
they form a compact invariant attractor or repeller. The Lorenz attractor is a
standard example. The first return map of a cross section may be conjugate to a
shift space with a countably infinite alphabet. They are not structurally stable.
See [33]. Morales and Pacifico have shown that generically a flow on a 3-manifold
either has infinitely many sinks or sources, or (exclusive) has a chain recurrent set
that is hyperbolic or singular hyperbolic. Their result implies that a generic flow
on a 3-manifold has an attractor or a repeller. This is done in [34], a paper that
should be widely read. They raise the following question in Conjecture 1.3.

Question. Can every C1 vector field on a closed 3-manifold be approximated by a 1002 ?

vector field exhibiting a homoclinic tangency or by a singular Axiom A one without
cycles? (See [34] for definitions and details.)

Their conjecture is “yes”.
The rest of this chapter is devoted to Smale flows.

Templates for Basic Sets

Let B be a basic set of a Smale flow that is the suspension of a nontrivial
irreducible SFT. We can pick a neighborhood of B that will be foliated by stable
manifolds. If we form a quotient space by collapsing along the stable direction
we derive a two dimensional branched manifold TB known as a template. The
original flow will induce a semi-flow on the template. A theorem of Joan Birman
and Robert Williams asserts that there is a one-to-one correspondence between the
periodic orbits of B and TB that preserves the knot type of each periodic orbit
and how they are linked [4]; see also [24, Theorem 2.2.4]. Templates allow us to
“see” basic sets. The simplest example is the Lorenz template shown in Figure 1 on
the left. One can recover the basic set by taking an inverse limit of the template’s
semi-flow. For the Lorenz template the basic set is a suspension of the full 2-shift.

Templates, slightly modified, are used to model singular hyperbolic attractors,
see Figure 1 on the right [3], and Plykin-like attractors – here the templates have
no boundary and are harder to draw [24, Figure 3.15].

It is natural to ask which knots and links exist on a given template. (For basic
definitions of knot theory see [11]). Let L(m, n) denote the Lorenz-like template
constructed from the Lorenz template by adding m half twists in the left band
and n in the right band; by symmetry L(m, n) = L(n, m). It is known that for
n ≥ 0 that the knots in L(0, n) are prime positive braids [52], while for n < 0 all
knots and links are in L(0, n) [23]. A template that contains all knots and links is
called universal. A template is positive if it can be placed in a braid form with all

2Sergio Fenley, private communication.
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Figure 1. Left: Lorenz template for a saddle set. Right: Lorenz
template for a singular hyperbolic Lorenz attractor.

crossings having the same orientation. For positive templates there is a bound on
the number of prime factors of the supported knots [46]. For m and n positive the
L(m, n) knots have at most two prime factors, while for L(−1,−1) the bound is
three [47]. Even though L(−1,−1) is not a positive template it can be presented
so the all the crossing are positive, but not while it is in braid form [41]. When
both m and n are negative it is known the L(m, n) does not support all links [24,
Proposition 3.2.21].

Question. Is there a general way to characterize which templates are universal?? 1003

Is there a bound on the number of prime factors of knots in templates that can be
presented with only one crossing type?

When the “standard” suspension of the Plykin attractor is placed in a flow on
S3 it contains a copy of L(0,−1) [24, Proposition 3.2.18] and thus contains all knots
and links [24, Proposition 3.2.18]. Rob Ghrist found that the same was true for
every Plykin-like attractor he studied, but no general theorem is known here.

Question. Are there any attractors which are “standard” embeddings of Plykin-like? 1004

attractors that do not have all knots and links?

Twist-wise flow equivalence

Two flows are topologically equivalent if there is an orbit-wise homeomorphism
between them that preserves the flow direction. Two SFTs are flow equivalent if
their suspensions are topologically equivalent. Two non-negative square matrices
are flow equivalent if they generate flow equivalent SFTs. In particular, incidence
matrices of first return maps of any two cross sections to the same flow of this
type are flow equivalent, although the two return maps need not be topologically
conjugate (the usual equivalence relation for SFTs). Topologically conjugate SFTs
are flow equivalent.

For nontrivial, irreducible non-negative square matrices, John Franks [19] has
shown that flow equivalence is completely determined by two easy to compute
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invariants. They are the Parry-Sullivan number, denoted PS, and the Bowen-
Franks group, denoted BF , derived in [37] and [9], respectively. If M is any non-
negative integral n × n matrix then

PS = det(I − M) and BF =
Z

n

(I − M)Zn
.

We note that |PS| is the order of BF if BF is finite, otherwise PS = 0. (The trivial
matrices are the permutation matrices. These generate SFTs and suspension flows
with a only a finite number of orbits, all closed.)

Flow equivalence only looks at basic sets, not at the ambient flows they may
be embedded in. For example, the inverse limit flows of L(0, 0) and L(0, 1) are
topologically equivalent since both are suspensions of the full 2-shift. Yet they look
different: one has a (orientation reversing) twisted band, the other does not. To
capture this twist-wise flow equivalence was introduced in [43]. We add additional
information to the incidence matrices by using a t if the first return map is orien-
tation reversing on a member of the Markov partition. This may require refining
the Markov partition, which can always be done. Call these modified incidence
matrices twist matrices. For L(0, 2n) and L(0, 2n + 1) we get twist matrices

[

1 1
1 1

]

and

[

1 1
t t

]

,

respectively. We take t2 = 1 in all matrix calculations to mimic the fact the
composition the first return map with itself is orientation preserving. Formally,
twist matrices have entries of the form at + b, with a and b nonnegative integers,
and are just matrices over the semi-group ring Z

+[Z/2].
The topological interpretation is as follows. Take two basic sets of flows. Sup-

pose they are flow equivalent. If we can extend the homeomorphism into the tan-
gent bundles so that the stable and unstable sub-bundles are preserved, we say
the embedded basic sets are twist-wise flow equivalent or sometimes ribbon equiv-
alent ; visually it is easier to extend the homeomorphism just a little, say ε > 0,
into the tangent bundle. Then the extended homeomorphism will take annuli to
annuli, Mobius bands to Mobius bands, and infinite strips to infinite strips. Two
twist matrices are twist-wise flow equivalent if they correspond to ribbon equivalent
embedded basic sets.

There are several easy to compute invariants. If T (t) is a twist matrix T (±1) is
defined by evaluating T (t) at t = ±1. Let

PS± = det(I − T (±1)) and BF± =
Z

n

(I − T (±1))Zn
.

Then PS+ and BF+ are clearly invariants since T (1) is just the incidence matrix.
It is shown in [41, 42] that PS− and BF− are also invariants that distinguish twist
matrices not distinguished by PS+ and BF+.

Next, let A =

[

0 1
1 0

]

. Then regard T (A) as the 2n × 2n matrix obtained by

replacing each t with A and each 1 with the 2×2 identity matrix: a+bt →

[

a b
b a

]

.
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Define

PS∂ = det(I − T (A)) and BF ∂ =
Z

2n

(I − T (A))Z2n
.

It is shown in [42] that PS∂ and BF ∂ are invariants of twist-wise flow equivalence.
While PS∂ = PS+ × PS− there are examples of pairs of twist matrices which are
not distinguished by PS± and BF± but are distinguished by BF ∂ .

Example. Let A =

[

3 1 + t
1 + t 3

]

and B =

[

3 1 + t
2 3

]

. We get PS+ = 0,

BF+ = Z⊕Z2, PS− = 4, and BF− = Z
2
2 for both matrices. But BF ∂(A) = Z⊕Z4

while BF ∂(B) = Z
2
2. Thus, A and B are in distinct twist-wise flow equivalence

classes.

Example. For

[

1 1
1 1

]

and

[

t 1
1 1

]

we get PS± = −1, which implies all three

BF groups are trivial. Yet, the suspension flow of the first matrix has no Mo-
bius bands while the suspension flow of the second clearly does.

Orientability, that is whether or not the ribbon set contains a Mobius band, is
itself an invariant and easy to check for. If the twist matrix T is n × n then it is
enough to check the diagonal entries of the first n powers of T . If no t’s appear,
then there are no Mobius bands in the ribbon set.

In [10] a complete algebraic invariant is produced. But, it is not known whether
or not it is computable. An expository account is given in [45]. Given a matrix A
over Z

+[Z/2] let (I −A)∞ be the N×N matrix equal to I−A in its upper left hand
corner and the infinite identity everywhere else. The theorem below is Theorem
6.8 of [45] which is a special case of Theorem 6.3 of [10]; see either of these for the
definition of essentially irreducible.

Theorem. Let A and B be nontrivial essentially irreducible matrices over Z
+[Z/2]

and assume they are nonorientable. Then A and B are twist-wise flow equivalent
if and only if there is an SL(N, Z[Z2]) equivalence from (I − A)∞ to (I − B)∞.

Classifying matrices up to SL-equivalence over a PID is done by using an al-
gorithm to convert them to a standard normal form (the Smith normal form).
However, Z[Z/2] is not a PID: (1 + t)(1 − t) = 0. It is unknown if an analogous
algorithm exists for matrices over Z[Z/2] or if SL-equivalence is decidable here.

Question. Is there an algorithm to classify square matrices over Z[Z/2] up to? 1005

SL-equivalence? This would then settle the problem of determining twist-wise flow
equivalence of basic sets of Smale flows.

Putting the pieces together and realization problems

Now we look at how the basic sets can be pieced together to form Smale flows,
with an emphasis on non-singular flows. This can be looked at from two prospec-
tives. We will first review some results of John Franks that determine which basic
sets can fit together to form a nonsingular flow on S3 and some generalizations.
Next we ask just how the basic sets can fit together.
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Suppose there is a single attracting closed orbit and a single repelling closed
orbit in a nonsingular Smale flow on S3. All other basic sets are saddle sets. Then
we can compute the absolute value of the linking number of the attracting repelling
pair as follows. Suppose there are n saddle sets and that for the i-th one det T (t)
is given by ai + tbi. Then the absolute value of the linking number is the product
|a1 − b1| · · · |an − bn| [16]. For example, the template L(1, 1) gives linking number
3.

The structure matrix of an embedded basic set is just its twist matrix evaluated
at t = −1. In [18] the following are proved. If S is any structure matrix of a basic
set, then there exists a nonsingular Smale flow φt on some 3-manifold with a basic
set B whose structure matrix is A and every other basic set of φt consists of a
single attracting or repelling closed orbit (Theorem 1). If there exists a nonsingular
Smale follow on S3 with basic set B with structure matrix S then there exists
a nonsingular Smale flow of S3 with a twist-wise flow equivalent basic set with
all other basic sets being attracting or repelling closed orbits (Proposition 3.2).
Furthermore, if det(I − S) 6= 0 then the group Z

n/(I − S)Zn is cyclic (Theorem
3.3). Thus,

[

1 2
2 1

]

cannot realized as the structure matrix of a basic set in a nonsingular Smale flow
on S3.

Question. Are there any other obstructions (besides [18, Theorem 3.3]) to the 1006 ?

realization of structure matrices in nonsingular Smale flows on S3?

Finally, in [20] we have an abstract classification of nonsingular Smale flows
on S3. The major new tool is the Lyapunov graph. Given a Smale flow on a
manifold there exist a smooth function from the manifold to the reals which is
non-increasing with respect to the flow parameter. Thus, each basic set goes to
a point. This is called a Lyapunov function. The Lyapunov graph is defined by
identifying connected components of the inverse images of points in the real line.
Each vertex of the graph is a point whose connected component contained a basic
set. A vertex is labeled by the basic set it is associated with. Edges are oriented
by the flow direction.

Suppose Γ is an abstract Lyapunov graph whose sinks and sources are each
labeled with a single attracting or repelling periodic orbit and suppose each re-
maining vertex is labeled with the suspension of a subshift of finite type. Then Γ
is associated with a nonsingular Smale flow on S3, if and only if the following are
satisfied. (1) The graph Γ is a tree with one edge attached to each source and each
sink vertex. (2) If v is a saddle vertex whose basic set has incidence matrix M and
with e+

v entering edges and e−v exiting edges then

e+
v ≤ ZM + 1,

e−v ≤ ZM + 1,

ZM + 1 ≤ e+
v + e−v .
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Here ZM is a the Zeeman number defined by dim ker((I −M2) : Z
n
2 → Z

n
2 ), where

M2 is the mod 2 reduction of M , Z2 is the integers mod 2, and n is the size
of M . (Ketty de Rezende has generalized Lyapunov graphs to Smale flows with
singularities [15].)

Thus, if there is a single attracting closed orbit and a single repelling closed orbit
ZM = 0 or 1. The converse holds as well. Further, if |a − b| = 1 we know that the
linking number is 1. But, we do not know whether or not they can or must form a
Hopf link.

To see how the basic sets fit together involves mostly ad hoc cut-and-paste ar-
guments. It is unlikely that a complete Wada like theorem will be found.

Smale flows on S3 where there is a single attracting and a single repelling closed
orbit, and a single saddle set modeled by an embedding of the Lorenz template
were studied in [44]. It was show that the attractor/repeller pair either formed a
Hopf link or a trefoil and meridian, and that the template was L(0, 2n) for some n.

Let φt be a Smale flow on M3. We say a template T (we include the embedding
in M3 in the definition of the symbol T ), is realized by φ is φ has a basic set
modeled by a template isotopic to T in M 3. In his Ph.D. dissertation [31], Vadim
Meleshuk studies realization of templates by Smale flows on S3. Without any other
restriction, all templates are realizable with only fixed point basic sets [Theorem
3.3.1]3 A template can be realized in a flow whose only other basic sets are fixed
point attractors and repeller if and only if certain easy to check topological criteria
are meet [Theorem 3.3.2].

Meleshuk then switches his attention to nonsingular Smale flows (NSFs). He
shows that every template is realizable by a nonsingular Smale flow on some 3-
manifold [Theorem 3.4.1]. On S3, he gives a complete criteria for when a template
can be realized by a NSF [Theorems 3.5.1, 3.5.6, 3.6.3]. In some cases a template T
is realizable with only attractors and repellers, but other times T may force other
saddle sets. For example, take a Lorenz template and tie a figure-8 knot in one
band. By [31] it can be realized in a nonsingular Smale flow, but by [44] it cannot
be realized with just a single repeller and attractor as the only other basic sets.
What other basic sets could be forced?

Following [22] Meleshuk works with thickened templates. These are handle bod-
ies whose boundaries are partitioned into 2-dimensional exit and entrance sets,
separated by loops (the tangent set). They retract naturally to the branched man-
ifold version of templates. He explores, using homological machinery, relations
between the entrance and exit sets. For example, he shows that if T is realizable
in a nonsingular Smale flow on S3 and the entrance and exit sets are connected,
then they are diffeomorphic [Theorem 3.10.6], and conjectures that if a template
can be realizable in a nonsingular Smale flow on S3 with only one attractor and
one repeller, then the exit and entrance sets must be diffeomorphic [Conjecture
3.10.11].

One of the motivations for the study of Smale flows is their connection to Anosov
flows. Any Anosov flow can be turned into a nonsingular Smale flow via two

3Meleshuk gives an independent proof, but the result can also be derived from a more general
theorem of William Bloch [7].
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surgery moves [4, 24]. Of course the underlying manifold will not be S3. Yet,
beyond [4] little has been done to exploit this. Ketty de Rezende along with several
collaborators has developed the theory of Lyapunov graphs of Smale flows to other
manifolds [14, 2]. Sue Goodman has characterized when a flow on an arbitrary
3-manifold with a one-dimensional hyperbolic set has a transverse foliation noting
the importance of transverse foliations in the theory of Anosov flows; see [26] and
also [25, 54]. Are these tools sufficient to give a more unified understanding of
nonsingular Smale flows on manifolds that support Anosov flows and Anosov flows?

Bonatti’s Geometric type

A Smale diffeomorphism is a hyperbolic map with zero dimensional basic sets. A
Smale flow always has Smale diffeomorphisms as cross sections. In a series of paper’s
Bonatti et al ([5, 8, 6, 48]) have developed a new approach to the study of Smale
flows on 3-manifolds and Smale diffeomorphisms on surfaces. The idea is to encode
geometric information along with a Markov partition. This data includes twist
data as in the twist matrices, but also includes “order” information; it is encoded
as a geometrized Markov partition However, the geometrized Markov partition is
not presented as a matrix but a mapping; whence it is not clear how to compute
invariants from it.

We shall give an example from a paper by Vago [48]. A Smale diffeomorphism
f on a disk takes two large rectangles r1 and r2 to images shown in Figure 2.
The horizontal strips, h11, h12, h13 in r1 and h21, h22, h23 in r2 are taken to the
vertical strips v24, v23, v22, v21, v11, v12, respectively. From this one constructs the
map φ, from (1, 2) × (1, 2, 3) (more typically the subset of realized indices) into
(1, 2) × (1, 2, 3, 4)× (+,−) given by

φ(1, 1) = (2, 4,−)
φ(1, 2) = (2, 3, +)
φ(1, 3) = (2, 2,−)
φ(2, 1) = (1, 4,−)
φ(2, 2) = (1, 3, +)
φ(2, 3) = (1, 2,−),

where the signs tells us whether the orientation has been reversed or not.
Geometrized Markov partitions have been used to prove theorems giving neces-

sary and sufficient conditions for the existence of congujacies. We shall state two,
but shall not define all the terms, as we only intend to give the reader the flavor of
this area.

Theorem ([8]; translated in [48]). Let f and g be two Smale diffeomorphisms
on compact surfaces, and let K and L be hyperbolic saturated sets of f and g
respectively, without attractors or repellers. Then f and g are conjugate on domains
of K and L if and only if (K, f) and (L, g) admit Markov partitions of the same
geometrical type.

Theorem ([5]). Let X and Y be Smale vectors fields on compact orientable 3-
manifolds. Let K and L be saturated saddle sets in X and Y respectively. Suppose
that K and L admit good Markov partitions of the same geometrical type. Then
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Figure 2. A Smale map

there exist invariants neighborhoods of K and L where the restrictions of the field
X and Y respectively, are equivalent.

Order is nonabelian (obviously). What is needed is a nonabelian theory of sym-
bolic dynamics. Bob Williams has developed a determinant for nonabelian matrices
that contains some knot theoretic data for Lorenz attractors [53]. Could his matri-
ces be modified to contain order data? They might capture part of the geometrized
Markov partition in matrix form and thus facilitate the search for computable in-
variants. Another approach is to to use the skew-products systems in [10]. There
the skew-products are of SFTs over finite groups. When the group is Z/2 we get
twist-wise flow equivalence. But the results in [10] hold for all finite groups includ-
ing nonabelian groups. I have tired to find a way to use permutations groups to
capture some of the order information in the geometrized Markov partition, but
without success. When the map is iterated the order information does not seem
to behave is a “group-like” manner. Could some non-group algebraic structure be
used? But then would skew-products be meaningful??

Question. How can we get computable invariants that capture some of the order? 1007

information in Bonatti’s geometrized Markov partition?
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