
MORE ON KNOTS IN ROBINSON’S ATTRACTOR

GHAZWAN AL-HASHIMI AND MICHAEL C. SULLIVAN

Abstract. In an earlier paper the second author made a study
of the knotted periodic orbits in a strange attractor for a set of
differential equations in a paper by Clark Robinson. The attractor
is modeled by a Lorenz-like template. It was shown that the knots
and links are positive but need not be positive braids. Here we
show that they are fibered, have positive signature, and that each
knot-type appears infinitely often. We then construct a zeta type
function that counts periodic orbits by the twisting of the local
stable manifolds.

1. Introduction and background

For us a knot is a smooth oriented embedding of S1 into R
3 and a

link is a finite set of knots with disjoint images. We are interested in
knotted periodic orbits in solution sets of 3 × 3 ODEs and how they
are linked. A knot or link is positive if it or its mirror image has a
knot diagram with only positive crossings. A knot or link is a positive
braid if it or its mirror image can be presented in braid form with only
positive crossings. Not all positive knots are positive braids. The 52
knot is an example, see [2].
A knot or link is fibered if the complement of a tubular neighborhood

in S3, taken as the one-point compactification of R3, can be fibered over
S1 with fiber an orientable surface known as a Seifert surface. Positive
braids are fibered [18] but this is not always the case for positive knots.
Again, 52 is an example, see [16]. The genus of a knot or link is the
minimal genus of over all Seifert surfaces.
A template is a branched 2-manifold with a semi-flow. Templates

are used to model chaotic invariant sets of certain flows in 3-manifolds.
The classic example is the Lorenz template that contains the periodic
orbits arising in the Lorenz equations. [1] Figure 1 shows the Lorenz
template with a periodic orbit that forms a trefoil knot. A Lorenz-like
template is a Lorenz template where some number of half twists have
been added to each of the two bands. These are denoted by L(m,n); see
Figure 2. The template L(0, 1) has been used to study a suspension of
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Smale horseshoe map, thus knots on L(0, 1) have been called horseshoe
knots. [12]
Two templates are regarded as equivalent if one can be transformed

into the other by a finite series of the two template moves shown in
Figure 3 and ambient or smooth isotopies. Note that because of the
second template move the usual invariants from algebraic topology do
not apply, but see [13].

Figure 1. Lorenz Template with Trefoil Orbit

m n

Figure 2. Lorenz-like Template

In [15] Clark Robinson studied the 3× 3 system of ODEs below.

ẋ = y

ẏ = x− 2x3 + αy + βx2y + yz(1)

ż = −γz + δx2

where α = −0.71, β = 1.8690262, δ = 0.1, and γ = 0.6.
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Figure 3. Template Moves

He showed that the system had a strange attractor similar to the
Lorenz attractor except that the bands had half twists. In [20] the
second author determined that L(−1,−1) was a template model for this
system and that the non-trivial knots in L(−1,−1) are positive, but
need not be positive braids. The proof involves surgering the template
L(−1,−1), without disturbing the periodic orbits, into a new template
H in which all crosses are negative. See Figure 4. Earlier, Ghrist had
shown [11] that two component links in L(−1,−1) had to have negative
or zero linking number.
It is known that positive knots have positive signature (or negative

depending on the sign convention used). [3] Thus, the non-trivial knots
on L(−1,−1) are not amphicheiral as these knots have signature zero.
It is known that the nontrivial knots in L(0, n), for n ≥ 0, are prime,

positive braids; positive braids are fibered and nontrivial positive braids
have positive signature and hence are non-amphicheiral. [1] For n <
0 the templates contain all knots and links. [10, 11] For m,n > 0
templates have composite knots with at most two components. [21]
Knots in L(−1,−1) have at most three prime factors. [21]

2. Knots and links in L(−1,−1).

Given a starting point on the branch line an orbit on L(m,n) gives
unique biinfinite sequence of 0’s and 1’s using 0 for each pass through
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Figure 4. Surgery on L(−1,−1)

the left half of the branch line and 1 for each pass through the right
half. [1] We can specify a periodic orbit with a finite sequence that is
to be repeated. Thus 0 is the periodic orbit that loops just once along
the left band. (If m is even this orbit will be in the boundary of the
template.) The trefoil orbit shown in Figure 1 is given by 01011.

Theorem 2.1. For orbits in L(−1,−1) we have the following.

a. The orbit for 01 is unlinked with all other closed orbits.
b. The orbit for 0 is unlinked to orbits of the form 01n and the

orbit for 1 is unlinked to orbits of the form 0n1,
c. Any pair of closed orbits not covered by (a) or (b) are linked.

Proof. Claim (a) is apparent from Figure 5 where the 01 orbit is shown
in purple. For claim (b) we refer to the same figure. The 0 orbit is
shown in red. Orbits of the form 01n only meet the upper branch line
once and thus must be to the left of the point where orbit for 0 meets
this branch line. Therefore, these orbits will never cross. The second
case is similar.
For claim (c), if two closed orbits traverse the same half twisted

band, they will have positive linking number. Let α and β be two
closed orbits that are not 01, 0 or 1. Suppose that α traverses the
upper half twisted band and never the lower and that β traverses the
lower half twisted band an never the upper. (Thus both are horseshoe
knots since they can be presented in L(0, 1).) Consider the right most
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point r of the intersection of α and the lower branch line. If every point
where β meets the lower branch line is to the right of r then either β
never meets the upper branch line (thus β is the orbit y, which is ruled
out), or it will be forced to traverse the upper half twisted band since
the forward flow line from r must next meet the upper branch line to
the right of its midpoint. Thus β meets the lower branch line to the
left of r and hence crosses under α. �

Figure 5. Orbits 01 and 1

Since links in L(−1,−1) are positive, we know that the figure-8 knot,
the Whitehead link and the Borromean rings are excluded. The next
result shows that the five-knot is also excluded.

Theorem 2.2. Knots and links in L(−1,−1) are fibered.

We review some facts about fibered knots and links. Let L be a link
in S3 and let F is a Seifert surface of L. We define a push off map,
µ : F → S3 − F as follows. Regard S3 and R

3 ∪ {∞} and assume F
is away from ∞ so we can use vector addition in R

3. We can assume
that F is smooth and choose a unit normal vector N(p) for each p ∈ F .
We can assume N(p) is smooth and there exists an ǫ > 0 such that
{ǫN(p)+p | p ∈ F} is a diffeomorphic copy of F that does not intersect
F . We define µ(p) = ǫN(p) + p.
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A push off map µ : F → S3 − F induces a homomorphism of the
fundamental groups,

µ∗ : π1(F, b) → π1(S
3 − F, µ(b)).

The following three theorems are well known.

Theorem 2.3. [4] The Seifert surface produced by Seifert’s algorithm
on a positive link diagram has minimal genus.

Theorem 2.4. [1] If F has minimal genus then µ∗ is injective.

Theorem 2.5. [18] If µ∗ is an isomorphism, then L is fibered.

Our proof is similar to Stalling’s original proof that positive braids
are fibered. [18, 1] The referee has pointed out that the proof can
be done cleaner using techniques developed by Gabai in [9] (see also
[7, 8]). In [5] Dehornoy uses this approach to reprove Stalling’s theorem.
We have kept with Stalling’s method to keep our paper accessible to
dynamists who may not have as much backgroyund in knot theory.

Proof of Theorem 2.2. We consider a link L in H. Following Figure 7
we can construct a Seifert surface F by gluing together a collection of
disks and bands with half twists. The only difference with Figure 5.2 of
[1] is that one disk will have bands connecting it with two other disks.
This surface will have minimal genus by Theorem 2.3. By Theorems
2.5 and 2.4 it only remains to show that µ∗ is onto.
Referring to Figure 6 we define three numbers n1, n2 and n3 as

follows. Let n1 be the number of stands of L coming from upper branch
line that go directly to the lower branch line; let n2 be the number of
strands of L that wrap around the upper half twisted band; and let n3

be the number of strands of L that wrap around the lower half twisted
band. For the example in Figure 6 we have n1 = 5, n2 = 3 and n3 = 4.
We switch now and work with the set of links that can be constructed

with disks and strips with half twist in the manner of Figure 7. This is
larger than the set of links supported by H. Call this set of links DS.
We deal with some trivial cases. If n1+n2+n3 = 1 the L is an unknot

and is thus fibered. If either n2 or n3 is zero, then L is a horseshoe
knot and hence fibered. If n1 is zero, then n2 and n3 can only be zero
or one. Thus, L is either an unknot or an unlink of two components.
Thus, L is fibered.
From now on we assume each ni is positive. If they are all equal to

one, then L is an unknot and hence fibered. We proceed by induction.
Suppose µ∗ is onto for ni ∈ {1, 2, 3, . . . , Ni}, for i = 1, 2, 3 where each
Ni ≥ 1.
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n1

n2

n3

Figure 6. ni, i = 1, 2, 3, defined

Let L be a link in DS for which 1 ≤ n1 ≤ N1, 1 ≤ n3 ≤ N3, and
n2 = N2+1. Let L′ and F ′ be a link and Seifert with ni = Ni, i = 1, 2, 3.
Then µ∗ : π1(F

′) → π1(S
3 − F ′) is onto. A Seifert surface F for L can

be obtained from F ′ by attaching some twisted strips to Dn2
to a new

disk Dn2+1 as shown in Figure 8. If the number of new twisted strips
is exactly one, then the link has not changed. If k > 1 new strip are
added k − 1 new generators for F ′ and S3 − F ′ are created. We have

π1(F ) ∼= π1(F
′) ∗ Zk−1.

Because each of the k twisted strips has the same twist each of the new
generators of π1(F ) is mapped onto a new generator of π1(S

3−F ) with
no new relations. See Figure 8. Thus,

π1(S
3 − F ) ∼= π1(S

3 − F ′) ∗ Zk−1

and µ∗ is onto. The same argument works if we increased N1 or N3

instead of N2. �

There are 2977 prime knots with crossing number 12 or less. There
are 33 prime knots with crossing number 12 or less that are fibered
and known to be positive. In addition, there are seven prime knots
with crossing number 12 that are fibered and whose positivity statuses
are unknown. We also note that no prime positive fibered knot with
crossing number 12 is alternating. [2] Thus, while it is known that any
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Figure 7. DS

µ

Figure 8. µ∗ takes generators to generators

template supports infinitely many distinct knot types [6] the collection
of prime knots in L(−1,−1) seems rather narrow.
The proof of Theorem 2.2 can be adapted to prove the following

generalization.

Theorem 2.6. Consider a tree with N vertices and K edges embedded
in R

2. Each edge is labeled with a nonzero integer M1,M2, . . . ,MK. Re-
place each vertex with a disk in R

2 that are disjoint. Now in R
2×[−ǫ, ǫ]

replace each edge, I, with |MI | half twisted bands, with the crossings
the same sign as MI , between the disks corresponding to the vertices
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of edge I. This is to be done without the bands crossing themselves or
each other; that is the projection back into R

2 will have one crossing for
each half twist and no others. The boundary of the resulting complex
is a link whose only crossings are at the half twists in the bands. Such
a link is fibered.

Theorem 2.7. Let L be a link in H. Let µ be the number of compo-
nents, c be the number of crossings and let n1, n2 and n3 be defined as
earlier. The genus is denoted by g and we let r be the rank of π1(S

2−L).
Then

g =
c− n1 − n2 − n3 − µ+ 2

2
,(2)

r = c− n1 − n2 − n3 + 1.(3)

Proof. The second formula follows from the first since r = 2g + µ− 1.
Let F be the minimal Seifert surface for L as constructed before.

We can put F in to a disk with strips model surface M [14]; see Figure
9. Then M is the union of a central disk D and 2g + µ − 1 strips. A
homeomorphism takes F to M . The disk D is the image of

D1 ∪ · · ·Dn1
∪D′

1 ∪ · · · ∪Dn2
∪D′′

1 ∪ · · ·D′′
n3

∪

{n1 + n2 − 1 twisted bands along the top of Figure 7} ∪

{n3 twisted bands along the lower right of Figure 7.}

The remaining c−(n1+n2+n3−1) twisted bands in F will be mapped
to the strips of M . Thus,

2g + (µ− 1) = c− (n1 + n2 + n3 − 1).

The first equation follows. �

g

µ− 1

Figure 9. Disk with strips model of a Seifert surface
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Theorem 2.8. Let K be the knot type of a closed orbit in L(−1,−1).
There are infinitely many closed orbits in L(−1,−1) of the same knot
type.

Proof. We work with a modified version of H shown in Figure 10. Let
w be a minimal word in 0 and 1 for a closed orbit Ow in with knot type
K. Cyclic permutations of w do not change the orbit it represents.
We can thus assume that the first letter of w represents the left most
intersection point of Ow with the top branch line or the bottom branch
line if Ow misses the top branch line. We also assume w is not 01. This
insures there is a positive distance between this point and the left edge
of the branch line.
Then for any n > 0 the word w′ = (01)nw represents an orbit Ow′

in H. By inspection we see in Figure 10 that after a series of R1

Reidemeister moves the knot type of Ow′ is also K.
The exclusion of w = 01 does not cause a problem because there

are other closed orbits that are unknotted, for example w = 0. Hence,
there are infinitely many copies of the unknot in H. �

Figure 10. A knot K with some redundant strands

This results also holds for the template L(0,m) - use 0n instead of
(01)n.
For an attractor for the Lorenz equations, the template model is a

subset of what we are calling L(0, 0). In particular the orbits for 0 and
1 are not realized. It is also the case for the attractor in Robinson’s
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equations that they are a subset of the orbits on the L(−1,−1) tem-
plate. However, the 01 orbit is always realized as a periodic orbit so
Theorem 2.8 holds for the attractor in Robinson’s equations.

3. A zeta function

For a map f : X → X one can define a formal power series
∞
∑

n=1

Fns
n

n
,

where Fn is the cardinally of the fix point set of the n-th iterate of f .
When f is a diffeomorphism with a hyperbolic chain recurrent set then
each Fn is finite, the series has a positive radius of conference and the
exponential of the limit is a rational function called the zeta function
of f .

ζ(s) = exp

(

∞
∑

n=1

Fns
n

n

)

.

See, for example, [17].
For a topological flow the period of a closed orbit is not invariant.

We can study first return maps on cross sections, but the period of a
closed orbit will in general depend on the choice of the cross section.
One might attempt to circumvent this by tracking closed orbits ac-
cording to knot theoretic invariants. Williams has constructed a type
of zeta function to distinguish among different Lorenz attractors (that
arise for different parameter values) - in certain cases. [22] But as we
have seen in some templates each realized knot-type has infinitely many
realizations. In [19] this is circumvented by tracking the twisting in the
local stable manifolds of closed orbits - we visualize these as ribbons.
However, this only worked for templates that could be presented as
positive braids. The template in Figure 11, where the crossings near
the upper branch line are negative and while the crossings near the
lower branch line are positive, contains infinitely many untwisted un-
knots. Here we show that although L(−1,−1) cannot be presented
as a positive braid it is still possible to define a rational zeta function
tracking closed orbit according to their twisting.
The notion of twisting we will use is not the standard one. A ribbon

which has a braid presentation such that each crossing of one strand
over another is positive and each twist in each strand is positive, will be
called a positive ribbon. The core and boundary of a positive ribbon are
positive braids. We will use the following notation. If R is a braided
ribbon, let c be the sum of the crossing numbers of the core of R, using
+1 for positive crossings and −1 for negative ones. Let t be the sum of
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Figure 11. Template with infinitely many untwisted unknots

the half twists in the strands of R and let n be the number of strands
of the core. Then as in [19] we define the usual twist, the modified twist
and the computed twist, respectively, by

τu = c+ t/2, τm = n− 1 + t/2, τc = 2n+ t.

Notice τc = 2τm + 2. It is clear that τu is an isotopy invariant since
it is just the linking number of the boundary components when the
ribbon is an annulus and half the linking number of the boundary and
the core of the ribbon when it is a Möbius band. However, τc and τm
are not isotopy invariants of ribbons in general but are only invariant if
the final presentation is also a positive braid. [19] Since our orbits are
not presented as positive braids τm and τc must be defined differently
than in [19].

Definition 3.1. Let w1 and w2 be braids (open) with n1 + n2 and
n1 + n3 strands respectively. Place them so their regular projection
into the xy-plane is disjoint and aligned as in Figure 12. Form a link
by attaching the n1 lower left most strands of w1 to the n1 upper left
most strands of w2, the n1 lower left most strands of w2 to the n1 upper
left most strands of w1, attach the n2 lower right most strands of w1

to the n2 upper right most strands of w1, and the n3 lower right most
stands of w2 to the n3 upper right most strands of w2. All this is to be
done without creating any new crossings as in Figure 12. A link or a
knot that has such a projection is said to be double braided. Likewise,
we can define a ribbon to be double braided.

All knots on H are double braided. We now redefine τc and τm
for positive double braided ribbons by using n = n1 + n2 + n3 in the
previous formulas. Now we can define our zeta function.
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w1

w2

Figure 12. A double braid

Definition 3.2. For a positive double braided template let Tq′ be
the number of closed orbits with computed twist τc = q′. Let Tq =
Σq′|qq

′Tq′ . Then

ζ(t) = exp

(

∞
∑

q=2

Tqt
q

q

)

.

The Tq are finite by the same argument as Lemma 4.2 of [19]. Clearly
ζ(t), as a formal expression, is invariant under isotopy and the two
template moves. We will show that it is a rational function, actually
the reciprocal of a polynomial in t, that is easy to compute.
We define a twist matrix of a positive double braided template with

respect to a given Markov partition as follows. First we select a Markov
partition consisting of line segments transfer to the template’s flow each
cutting completely across a branch. If there is no forward flowline from
segment i to segment j we let Aij = 0. If there is a flowline from i to
j we let Aij = tq where q is the number of half twists in the flowline’s
local unstable manifold. The template can always be isotoped so that
each q is an integer. Each closed orbit has a period with respect to the
given Markov partition. The diagonal entries of An represent closed
orbits of period n with the powers of t giving their twist. A different
choice of the Markov partition changes the periods of the orbits, but
not their twists.
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Figure 13 gives a Markov partition for H. Then, we have AH(t) =








0 0 1 1
t3 t3 0 0
t2 t2 0 0
0 0 t3 t3









.

Theorem 3.3. ζ(t) =
1

det(I − A(t))
.

The proof is exactly the same as the proof of Theorem 5.2 in [19].
Thus,

ζH(t) = t6 − 2t3 − t2 + 1.

Suppose we add to H an extra half twist to the right band coming from
the lower branch line and call this template H ′. Then

AH′(t) =









0 0 1 1
t3 t3 0 0
t2 t2 0 0
0 0 t4 t4









and
ζH′(t) = t7 − t4 − t3 − t2 + 1.

Thus, they are not equivalent. For L(m,n) with m and n nonnegative
we get

ζmn(t) = −tm+2 − tn+2 + 1.

Thus, neither H or H ′ is equivalent to L(m,n) nonnegative m and
n. We knew this already for H because it positive knots that are not
positive braids.
We believe the methods here can be extended to all positive tem-

plates. It would be interesting to know if one can determine if a given
positive template is or is not equivalent to some positive braid template
using this zeta function.
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