Properties of the Real Number System

• Algebraic Properties.
 \(\mathbb{R} \) is an ordered field, with \(\mathbb{Q} \) an ordered subfield, and \(\mathbb{Z} \) an ordered commnunative subring with a unit.

• Cardinality.
 \(\mathbb{R} \) is uncountably infinite, while \(\mathbb{Q} \) and \(\mathbb{Z} \) are countably infinite.

• Dense Subsets.
 Between any pair of distinct real numbers there is a rational number and an irrational number.

• Archimedean Properties.
 For every \(x \in \mathbb{R} \) there exists an \(n \in \mathbb{N} \) such that \(n > x \).
 For every \(x \in (0, \infty) \) there exists an \(n \in \mathbb{N} \) such that \(\frac{1}{n} < x \).

• \(\epsilon \)-Principle.
 If \(\forall \epsilon > 0 \) we have \(a \leq b + \epsilon \), then \(a \leq b \).
 If \(\forall \epsilon > 0 \) we have \(|x - y| \leq \epsilon \), then \(x = y \).

• Completeness Properties.
 If \(S \subset \mathbb{R} \) has an upper bound, then \(S \) has a least upper bound; it is called the supremum of \(S \) and is denoted \(\sup S \). If \(S \neq \emptyset \) and has no upper bound then we define \(\sup S = \infty \). We define \(\sup \emptyset = -\infty \).
 If \(S \subset \mathbb{R} \) has a lower bound, then \(S \) has a greatest lower bound; it is called the infimum of \(S \) and is denoted \(\inf S \). If \(S \neq \emptyset \) and has no lower bound then we define \(\inf S = -\infty \). We define \(\inf \emptyset = \infty \).

• Subsets.
 If \(\emptyset \neq S \subset T \), then
 \[-\infty \leq \inf T \leq \inf S \leq \sup S \leq \sup T \leq \infty. \]

• Cauchy Completeness.
 An infinite sequence of real numbers \((a_n) \) converges iff
 \[\forall \epsilon > 0 \ \exists N \in \mathbb{N} \text{ such that } n, m \geq N \implies |a_n - a_m| < \epsilon. \]

• Existence of Roots.
 For every \(x \in [0, \infty) \) and \(n \in \mathbb{N} \), there exists a unique \(y \in [0, \infty) \) such that \(y^n = x \).

• Triangle Inequality.
 In \(\mathbb{R}^n \) we have \(|x - z| \leq |x - y| + |y - z| \).